CITY OF BANDON

ANNUAL BIOSOLIDS REPORT

2020

BIOSOLIDS ANALYSIS 2020

BIOSOLIDS WORKSHEET

NEILSON RESEARCH ANALYSIS REPORT JULY 2020 #20051069

Name	Bandon STP			Biosolid Analys	is	2020
File No.	5664					
	541-347-9122					
Permit No.		Lab analysis #	20051069	Date	07/30/20	
	mg/kg dry-wt.			and the second second		and the second second second second
Arsenic Cadmium	16.7 0.334					ple events if land applied on same parcel
Chromium	0.334		Total Mertic tons Total US tons		Total US to Total Merti	
Copper	3.34		Acres land	57.17	in the same particular a sec	c tons 51.453
Lead	16.7		applied	18		
Mercury	0.132		City used primary site			
Molybdenum	16.7		Cake Biosolid		0.85	Replace the 1 with the appropriate decima
Nickel	1.67		Liquid Biosolid		0.00	
Selenium	16.7		% Total Solids	1.49		Dewater (10-50%) and Liquid
Zinc	16.7		% Volatile Solids	1.49		Conversion
Enito	10.7		70 Volatile Solids	11		
Total Organic	4.728	47280		0/ 10141		US-> Metric tons multiply by 1.1
TKN	4.720	48800	Organic N = (%TKN	-%NH4)		Metric -> US tons multiply by 0.9
NH4	0.152			4 - 0/1000	and the second	
NO3		1520	Inorganic N = (%NH	4 + %NO3)	color key	Constant of the card
	0.876	8760				requires entered value
pH	3.2					calculated value
Fecal Coliform	ND	<2,000,000 /dry gr.	Total Solids			replace the 1 with # from selection
org./100ml	ND					
Anaerobic D.	10.0	0.2	Replace the 1 with th			
Aerobic D.	0.3	0.3	Replace the 1 with th			
Drying Bed		0.15	Replace the 1 with th	e appropriate deci	mal	
Gal/yr.	920152					
lb. TS/yr.	114340	114340	Ib. TS/yr.= %TS x	8.34 x gal/yr	114343	lb. dry yr
Dry TS US ton/	57.17		51.45	Dry Metric tons		
		Ceiling Limits	Ceiling Limits			
	Biosolid	503.13	503.13	Yearly	Yearly	Yearly
c	oncentratio	Table 2 Conc.	Table 2 metal	Ib. Metal per	Loading	Loading
Metal	mg/kg	mg/kg	lb./ton biosolid	ton biosolids	lb./ac-yr.	kg/ha
Arsenic	16.7	75	0.150	1.90948	0.10608	0.119
	0.334	85	0.170	0.03819	0.00212	0.002

Chromium	0	1200	2.400	0.00000	0.00000	0.000
Copper	3.34	4300	8.600	0.38190	0.02122	0.024
Lead	16.7	840	1.680	1.90948	0.10608	0.119
Mercury	0.132	57	0.114	0.01509	0.00084	0.001
Molybdenum	16.7	75	0.150	1.90948	0.10608	0.119
Nickel	1.67	420	0.840	0.19095	0.01061	0.012
Selenium	16.7	100	0.200	1.90948	0.10608	0.119
Zinc	16.7	7500	15.000	1.90948	0.10608	0.119
There is no Ceilir	ig limit for Chro	omium, table value	e is a past limit that is i	no lomnger valid, u		
		mg/kg dry-wt.	lb. N / yr.	lb./ac-yr.	kg/ha	5
Total Organic	4.728	4.728	0.0000	0.0000	0.0000	
TKN	4.88	4.88	0.0000	309.9884	347,1871	
NH4	0.152	0.152	0.0000	0.0000	0.0000	
NO3	0.876	0.876	1001.6184	55.64547	62.32292	
lb. mineralized o	organic N/dry	ton	0.0000			
lb. inorganic N/c			17.5200			
Total lb. availab			17.520			
Nitrogen loading		re			0	kg/ha
Number dry tons	s land applied	per acre	3.176		7,114	metric ton/ha
Total Ib. Org-N p			0.000			inotito tonina
Total lb. NH4 pro	oduced per ye	ar	0.000			
Total lb. NO3 pr	oduced per ye	ear	1001.61840		<u> </u>	
Total lb. Availab			1001.618			
Total number of		d per year	ERR			

Trace Metals

L....

Sample calculation:

[([(5.0 mg As/1000000 mgTS X 140000 lb. Total Solids) = 0.07 lb. As/yr.

(((5.0 mg As/ 1000000 mg TS) x 140000 lb. TS) / 52 ac = 0.013 lb. As/ac-yr.

(EPA cumulative loading 41 total lb. As/ac / 0.013 lb. As/ac/yr.) = 2719.3 yr. site life for As

(0.013 lb. As/ac-yr.) x 1.12 conversion factor = 0.015 kg/ha-yr.

(2.6 tons biosolid is equivalent to a loading rate of 100 lb. total available N/ac) .

	Analysis Biosolid concentratio	Cumulative Limit 40 CFR 503.13 Table 3 Conc.	ts 40 CFR 503.13 Table 2 metal	Yearly Ib. Metal per	Biosolid Loading	Biosolid Loading
Metal	mg/kg	mg/ha	lb./ac biosolid	ton biosolids	Ib./ac-yr.	kg/ha-yr.
Arsenic	16.7	41	45.920	2.338	0.1299	0.145
Cadmium	0.334	39	43.680	0.047	0.0026	0.003
Chromium	0	1200	1344.000	0.000	0.0000	0.000
Copper	3.34	1500	1680.000	0.468	0.0260	0.029
Lead	16.7	300	336.000	2.338	0.1299	0.145
Mercury	0.132	17	19.040	0.018	0.0010	0.001
Molybdenum		18	20.160	2.338	0.1299	0.145
Nickel	1.67	420	470.400	0.234	0.0130	0.015
Selenium	16.7	100	112.000	2.338	0.1299	0.145
Zinc	16.7	2800	3136.000	2.338	0.1299	0.145
	Biosolid					
	Analysis	Table 3 metal	Ib. Metal per	Loading	Loading	Site Life
Metal	mg/kg	mg/ha	/ac biosolid	lb./ac-yr.	kg/ha-yr.	in years
Arsenic	16.7	41	45.920	0.106	0.119	345.08309
Cadmium	0.334	39	43.680	0.002	0.002	16412.488
Chromium	0	1200	1344.000	0.000	0.000	ERR
Copper	3.34	1500	1680.000	0.021	0.024	63124.956
Lead	16.7	300	336.000	0.106	0.119	2524.9982
Mercury	0.132	17	19.040	0.001	0.001	18102.197
Molybdenum	16.7	18	20.160	0.106	0.119	151.49989
Nickel	1.67	420	470.400	0.011	0.012	35349.975
Selenium	16.7	100	112.000	0.106	0.119	841.66608
Zinc	16.7	2800	3136.000	0.106	0.119	23566.65

June 10, 2020

Steve James City of Bandon P.O. Box 67 Bandon, OR 97411 TEL: (541) 347-9122 FAX: (541) 347-1415

RE: Digester #3-AMENDED

Order No.: 20051069

Dear Steve James:

Neilson Research Corporation received 1 sample(s) on 5/28/2020 for the analyses presented in the following report.

The results relate only to the parameters tested or to the sample as received by the laboratory. This report shall not be reproduced except in full, without the written approval of Neilson Research Corporation. If you have any questions regarding these test results, please feel free to call.

Sincerely, Neilson Research Corporation

Tampa Shmedeman

Tamra Schmedemann Senior Project Manager 245 S Grape St

Medford, OR 97501

Case Narrative

WO#: 20051069 Date: 6/10/2020

CLIENT: City of Bandon Project: Digester #3-AMENDED

The analyses were performed according to the guidelines in the Neilson Research Corporation Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

Neilson Research Corporation certifies that this report is in compliance with the requirements of NELAP. No unusual difficulties were experienced during analysis of this batch except as noted below or qualified with data flags on the reports.

The report is amended changing the Report To Name from Bill Nielson to the correct name of Steve James. TRS

CLIENT:

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

Analytical Report

WO#: 20051069 Date Reported: 6/10/2020

Revision v1

Collection Date: 5/27/2020 9:30:00 AM

Received Date: 5/28/2020 10:45:00 AM Matrix: SLUDGE

Lab ID: 20051069-01 Client Sample ID Digester #3 **Project: Digester #3-AMENDED** Sample Location: Grab

City of Bandon

Method NELAP Result DF MDL RL Units MCL Analyses Date Analyst Status Analyzed Qual SLUDGE ANALYSES **MERCURY BY EPA 245.1** E245.1 0.403 0.118 0.132 mg/Kg-dry 06/01/20 16:03 KMC Mercury A 1 SLUDGE ANALYSES TRACE METALS BY EPA 200.7 ICP Arsenic E200.7 27.2 1 0.856 mg/Kg-dry 06/01/20 20:52 SJS A 16.7 Cadmium E200.7 A 1.73 1 0.0200 0.334 mg/Kg-dry 06/01/20 20:52 SJS Copper E200.7 A 259 1 0.195 3.34 mg/Kg-dry 06/01/20 20:52 SJS mg/Kg-dry Lead E200.7 A 20.7 1 0.888 16.7 06/01/20 20:52 SJS Molybdenum E200.7 A 6.53 J 1 0.132 16.7 mg/Kg-dry 06/01/20 20:52 SJS Nickel E200.7 A 16.7 1 0.220 1.67 mg/Kg-dry 06/01/20 20:52 SJS Potassium E200.7 A 9420 5.66 334 mg/Kg-dry 06/01/20 20:52 SJS 1 Selenium E200.7 A 8.89 1 1.72 16.7 mg/Kg-dry 06/01/20 20:52 SJS J Zinc E200.7 1050 0.241 06/01/20 20:52 SJS A 1 16.7 mg/Kg-dry FECAL COLIFORM BACTERIA BY MTF 200 200 MPN/100mL 05/28/20 13:00 DJK Fecal Coliform Bacteria A9221E ND ERFC 100 FC/g Total Solids 134 MPN/g TS A9221E ND ERFC 100 134 05/28/20 13:00 DJK FC/g Volatile Solids A9221E ND ERFC 100 174 174 MPN/g VS 05/28/20 13:00 DJK SLUDGE ANALYSES **AMMONIA NITROGEN AS N** Nitrogen, Ammonia (As N) E350.1 0.152 0.00911 0.0335 % Wt-dry 06/01/20 10:48 SCN A 1 SLUDGE ANALYSES NITRATE NITROGEN AS N 0.876 0.0105 06/01/20 15:30 SCN Nitrate Nitrogen E353.2 10 0.0335 % Wt-dry Α SLUDGE ANALYSES TOTAL KJELDAHL NITROGEN Value above quantitation range CI Sample container temperature is out of limit as specified at testcode E QUALIFIERS Н Holding times for preparation or analysis exceeded Analyte detected below quantitation limits MI Recovery outside control limits due to Matrix Interference ND Not Detected at the Reporting Limit PL Permit Limit

NELAP NELAP A Accredited. ORELAP 100016, OR-028

Analytical Report

WO#: 20051069 Date Reported: 6/10/2020

CLIENT: City of Bandon Lab ID: 20051069-01 Client Sample ID Digester #3 **Project:** Digester #3-AMENDED Sample Location: Grab

Collection Date: 5/27/2020 9:30:00 AM Received Date: 5/28/2020 10:45:00 AM Matrix: SLUDGE

Analyses	Method	NELAP Status	Result Qu	DF al	MDL	RL	Units MC	L Date Analyst Analyzed
SLUDGE ANALYSES TOTAL KJELDAHL NI	TROGEN							
Nitrogen, Kjeldahl, Total	E351.2	А	4.88	10	0.720	1.05	% Wt-dry	05/29/20 15:04 SCN
SLUDGE ANALYSES PH BY SM 4500 H-B								
рН	A4500-H+B		3.2 HR	1	0.1	0.1	pH Units	05/28/20 17:46 DLM
SLUDGE ANALYSES TOTAL PHOSPHORUS	S AS P							
Phosphorus, Total (As P)	A4500-P-E	А	2.94	250	0.138	0.419	% Wt-dry	06/05/20 12:01 KMC
SLUDGE ANALYSES % TOTAL SOLIDS								
Total Solids	A2540G		1.49	1	0.0100	0.0100	%	05/29/20 9:49 KEC
SLUDGE ANALYSES % VOLATILE SOLIDS								
Volatile Solids	E160.4	A	77.0	1	0.0100	0.0100	%	05/29/20 9:49 KEC

CI H MI PL Sample container temperature is out of limit as specified at testcode Holding times for preparation or analysis exceeded

QUALIFIERS

Recovery outside comtrol limits due to Matrix Interference

Value above quantitation range E

ND

Permit Limit

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit

Revision v1

NELAP NELAP A Accredited. ORELAP 100016, OR-028

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Revision v1

Client: City of Bandon Project: Digester #3-AMI	ENDED			TestCode: AMMONIA_SL	
Sample ID: MB-4983 Client ID: PBS Analyte	SampType: MBLK Batch ID: 4983 Result	TestCode: AMMONIA TestNo: E350.1 PQL SPK value	E350.1	Analysis Date: 6/1/2020 SeqNo: 180008	Qual
Nitrogen, Ammonia (As N)	ND	0.000500			
Sample ID: LCS-4983 Client ID: LCSS	SampType: LCS Batch ID: 4983	TestCode: AMMONI/ TestNo: E350.1	A_S Units: %Wt E350.1	t Prep Date: 5/29/2020 RunNo: 12064 Analysis Date: 6/1/2020 SeqNo: 180010	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit (Qual
Nitrogen, Ammonia (As N)	0.218	0.0998 0.1840	0	119 65 135	
Sample ID: 20050906-11AMS Client ID: BatchQC	SampType: MS Batch ID: 4983	TestCode: AMMONIA TestNo: E350.1	E350.1	Analysis Date: 6/1/2020 SeqNo: 180014	
Analyte Nitrogen, Ammonia (As N)	Result 3390	PQL SPK value 513 168.7		%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit (164 70 130	Qual S1
Sample ID: 20050906-11AMSD Client ID: BatchQC	SampType: MSD Batch ID: 4983	TestCode: AMMONI TestNo: E350.1	A_S Units: mg/L E350.1	L Prep Date: 5/29/2020 RunNo: 12064 Analysis Date: 6/1/2020 SeqNo: 180015	_
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit	Qual
Nitrogen, Ammonia (As N)	3270	513 168.7	3117	89.4 70 130 3394 3.79 20	

Qualifiers: Ct Sample J Analyte

C1 Sample container temperature is out of limit as specified at testcode J Analyte detected below quantitation limits E Value above quantitation range

H Holding times for preparation or analysis exceed

ND Not Detected at the Reporting Limit

PL Permit Limit

MI Recovery outside comtrol limits due to Matrix Interference RL Reporting Detection Limit

Page 5 of 20

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bando Project: Digester #3-A		TestCode:	TestCode: FECAL-C-25MPN					
Sample ID: MB-R12172 Client ID: PBW Analyte	SampType: MBLK Batch ID: R12172 Result	TestCode: FECAL-C-25 Units: MPN/100mL Prep Date: TestNo: A9221E Analysis Date: 5/28/2020 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	RunNo: 12172 SeqNo: 181738 I %RPD RPDLimit Qual					
Fecal Coliform Bacteria	ND	2.00						
Sample ID: LCS-R12172 Client ID: LCSW Analyte	SampType: LCS Batch ID: R12172 Result	TestCode: FECAL-C-25 Units: MPN/100mL Prep Date: TestNo: A9221E Analysis Date: 5/28/2020 PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	RunNo: 12172 SeqNo: 181739 al %RPD RPDLimit Qual					
Fecal Coliform Bacteria	Positive	2.00 1.000 0 0 0 0						

Qualifiers:

C1 Sample container temperature is out of limit as specified at testcode

E Value above quantitation range

J Analyte detected below quantitation limits PL Permit Limit

- MI Recovery outside comtrol limits due to Matrix Interference
- H Holding times for preparation or analysis exceed
 ND Not Detected at the Reporting Limit

- ion limits
- RL Reporting Detection Limit

Revision v1

Page 6 of 20

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

roject: Digester #3-A	AMENDED						T	estCode: H	IG_SL		
Sample ID: MB-4992 Client ID: PBS	SampType: MBLK Batch ID: 4992		de: HG_SL lo: E245.1	Units: mg/Kg SW7471A		Prep Date Analysis Date	e: 6/1/2020 e: 6/1/2020		RunNo: 120 SeqNo: 180		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.000200									
Sample ID: LCS-4992	SampType: LCS	TestCo	de: HG_SL	Units: mg/Kg		Prep Date	e: 6/1/2020)	RunNo: 120	087	
Client ID: LCSS	Batch ID: 4992	Test	lo: E245.1	SW7471A		Analysis Date	e: 6/1/2020	0	SeqNo: 18	0431	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	26.4	0.481	27.90	0	94.8	50	150				
Sample ID: 20051069-01AM	S SampType: MS	TestCo	de: HG_SL	Units: mg/Kg-	dry	Prep Date	e: 6/1/202	0	RunNo: 12	087	
Client ID: Digester #3	Batch ID: 4992	Test	No: E245.1	SW7471A		Analysis Date	e: 6/1/202	0	SeqNo: 18	0434	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	3.53	0.132	3.291	0.4033	94.9	75	125				
Sample ID: 20051069-01AM	SD SampType: MSD	TestCo	de: HG_SL	Units: mg/Kg	dry	Prep Dat	e: 6/1/202	0	RunNo: 12	087	
Client ID: Digester #3	Batch ID: 4992	Test	No: E245.1	SW7471A		Analysis Dat	e: 6/1/202	0	SeqNo: 18	0435	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	3.66	0.132	3.289	0.4033	99.1	75	125	3.527	3.79	25	

Qualifiers:	CI	Sample container temperature is out of limit as specified at testcode		Value above quantitation range		Holding times for preparation or analysis exceed	
	J	Analyte detected below quantitation limits	MI	Recovery outside comtrol limits due to Matrix Interference	ND	Not Detected at the Reporting Limit	
	PL	Permit Limit	RL	Reporting Detection Limit			Revision v1

Page 7 of 20

RL Reporting Detection Limit

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon **Project:**

Digester #3-AMENDED

TestCode: ICP_200.7_SL

Sample ID: 20050993-09AMS Client ID: BatchQC			estCode: ICP_200.7_SL Units: mg/L TestNo: E200.7 E200.7			Prep Da Analysis Da	te: 6/1/202 te: 6/1/202	RunNo: 12093 SeqNo: 180546			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	5.01	0.0492	5.000	0.1672	96.9	70	130				
Cadmium	5.11	0.000983	5.000	0.03484	102	70	130				
Copper	12.5	0.00983	5.000	9.438	60.7	70	130				М
Lead	6.02	0.0492	5.000	0.9234	102	70	130				IAU
Molybdenum	5.25	0.0492	5.000	0.1857	101	70	130				
Nickel	5.60	0.00492	5.000	0.4737	103	70	130				
Selenium	5.27	0.0492	5.000	0.1571	102	70	130				
Zinc	31.1	0.0492	5.000	26.46	92.3	70	130				

Sample ID: 20050993-09AMSD	SampType: MSD	SampType: MSD TestCode: ICP_200.7_SL Units: m				Prep Da	te: 6/1/202	0	RunNo: 12093		
Client ID: BatchQC	Batch ID: 4997	TestNo: E200.7		E200.7	Analysis Date: 6/1/2020				SeqNo: 180		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4.97	0.0487	5.000	0.1672	96.1	70	130	5.014	0.812	25	
Cadmium	5.09	0.000973	5.000	0.03484	101	70	130	5.111	0.346	25	
Copper	12.3	0.00973	5.000	9.438	56.9	70	130	12.47	1.53	25	MI
Lead	6.01	0.0487	5.000	0.9234	102	70	130	6.023	0.170	25	1411
Molybdenum	5.22	0.0487	5.000	0.1857	101	70	130	5.248	0.540	25	
Nickel	5.62	0.00487	5.000	0.4737	103	70	130	5.599	0.327	25	
Selenium	5.29	0.0487	5.000	0.1571	103	70	130	5.270	0.437	25	
Zinc	30.9	0.0487	5.000	26.46	89.1	70	130	31.07	0.523	25	

Qualifiers:

CI Sample container temperature is out of limit as specified at testcode Analyte detected below quantitation limits

Ε Value above quantitation range

MI Recovery outside comtrol limits due to Matrix Interference н Holding times for preparation or analysis exceed ND Not Detected at the Reporting Limit

PL. Permit Limit

J

RL **Reporting Detection Limit**

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon **Project:**

Digester #3-AMENDED

TestCode: ICP_200.7_SL

Sample ID: MB-4997 Client ID: PBS	SampType: MBLK Batch ID: 4997	TestCode: ICP_200.7_SL Units: mg/Kg TestNo: E200.7 E200.7			Prep Da Analysis Da	ite: 6/1/202 ite: 6/1/202	RunNo: 12103 SeqNo: 180631				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	0.0143	0.0500									
Cadmium	0.0000800	0.00100									J
Copper	ND	0.0100									0
Lead	0.0304	0.0500									d.
Molybdenum	ND	0.0500									J
Nickel	ND	0.00500									
Potassium	ND	1.00									
Selenium	ND	0.0500									
Zinc	0.00128	0.0500									

Sample ID: LCS-4997	SampType: LCS	TestCo	TestCode: ICP_200.7_SL Units: mg/Kg			Prep Dat	te: 6/1/202	0	RunNo: 12103			
Client ID: LCSS	Batch ID: 4997	Test	No: E200.7	E200.7		Analysis Date: 6/1/2020				SeqNo: 180632		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	183	10.7	178.0	0	103	50	150					
Cadmium	143	0.214	151.0	0	94.8	50	150					
Copper	160	2.14	151.0	0	106	50	150					
Lead	86.0	10.7	76.10	0	113	50	150					
Molybdenum	46.7	10.7	50.70	0	92.1	50	150					
Nickel	86.6	1.07	89.20	0	97.1	50	150					
Potassium	2200	214	2420	0	91.0	50	150					
Selenium	183	10.7	189.0	0	96.9	50	150					
Zinc	355	10.7	335.0	0	106	50	150					

Qualifiers:

Sample container temperature is out of limit as specified at testcode Analyte detected below quantitation limits

Е Value above quantitation range

MI Recovery outside comtrol limits due to Matrix Interference

н Holding times for preparation or analysis exceed ND Not Detected at the Reporting Limit

PL Permit Limit

C1

J

RL **Reporting Detection Limit**

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon Project: Digester #3-AM	ENDED						1	festCode: I	CP_200.7_S	L	
Sample ID: 20050993-09AMS Client ID: BatchQC Analyte	SampType: MS Batch ID: 4997 Result		de: ICP_200.7 No: E200.7 SPK value	_SL Units: mg/Kg E200.7 SPK Ref Val	%REC	Prep Da Analysis Da LowLimit			RunNo: 12 SeqNo: 18 %RPD		Qual
Potassium	484	4.92	55.00	429.5	99.8	70	130		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		E
Sample ID: 20050993-09AMSD Client ID: BatchQC	SampType: MSD Batch ID: 4997		de: ICP_200.7 No: E200.7	_SL Units: mg/Kg E200.7		Prep Da Analysis Da	te: 6/1/202 te: 6/1/202		RunNo: 12 SeqNo: 18		-
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Potassium	490	4.87	55.00	429.5	110	70	130	484.4	1.14	25	E

Qualifiers:

Е Value above quantitation range

Analyte detected below quantitation limits PL Permit Limit

- MI RL
- Recovery outside comtrol limits due to Matrix Interference **Reporting Detection Limit**
- Holding times for preparation or analysis exceed н
- ND Not Detected at the Reporting Limit

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Project: Digester #3-AMI	ENDED	TestCode: NO2_COLOR_SL	
Sample ID: MB-4979 Client ID: PBS Analyte	SampType: MBLK Batch ID: 4979 Result	TestCode: NO2_COLOR Units: % Wt Prep Date: 5/28/2020 RunNo: 12004 TestNo: A4500-NO2-B A4500-NO2-B Analysis Date: 5/28/2020 SeqNo: 178957 PQL SPK value SPK Ref Val % REC LowLimit HighLimit RPD RPD Imit	Qual
Nitrite Nitrogen	0.0000118	0.0000250	J
Sample ID: LCS-4979 Client ID: LCSS	SampType: LCS Batch ID: 4979	TestCode: NO2_COLOR Units: % Wt Prep Date: 5/28/2020 RunNo: 12004 TestNo: A4500-NO2-B A4500-NO2-B Analysis Date: 5/28/2020 SeqNo: 178958	
Analyte	Result	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit	Qual
Nitrite Nitrogen	0.000101	0.0000250 0.00009625 0 105 80 120	
Sample ID: 20051069-01AMS Client ID: Digester #3	SampType: MS Batch ID: 4979	TestCode: NO2_COLOR Units: % Wt-dry Prep Date: 5/28/2020 RunNo: 12004 TestNo: A4500-NO2-B Analysis Date: 5/28/2020 SeqNo: 178960	
Analyte Nitrite Nitrogen	0.0450	PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 0.00794 0.03056 0.01594 95.0 75 125 125	Qual
Sample ID: 20051069-01AMSD Client ID: Digester #3 Analyte	SampType: MSD Batch ID: 4979 Result	TestCode: NO2_COLOR Units: % Wt-dry Prep Date: 5/28/2020 RunNo: 12004 TestNo: A4500-NO2-B Analysis Date: 5/28/2020 SeqNo: 178961 PQL SPK value SPK Ref Val % REC LowLimit HighLimit RPD Ref Val % RPD RPDLimit	Qual
Nitrite Nitrogen	0.0463	0.00795 0.03062 0.01594 99.3 75 125 0.04496 3.00 25	Qual

Qualifiers:

Sample container temperature is out of limit as specified at testcode Analyte detected below quantitation limits E Value above quantitation range

MI Recovery outside comtrol limits due to Matrix Interference

H Holding times for preparation or analysis exceed
 ND Not Detected at the Reporting Limit

PL Permit Limit

CI

J

RL Reporting Detection Limit

L

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Sample ID: LCS-4999	SampType: LCS	TestCode: NO2NO3_SL Units: % Wt		Prep Date: 6/1/2020	RunNo: 12075
Client ID: LCSS	Batch ID: 4999	TestNo: E353.2 A4500-NO3-E		Analysis Date: 6/1/2020	SeqNo: 180137
Analyte	Result	PQL SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate Nitrogen	0.0227	0.00100 0.02370 0	95.8	60 140	
Sample ID: 20051069-01AMS	SampType: MS	TestCode: NO2NO3_SL Units: %Wt-dry	y	Prep Date: 6/1/2020	RunNo: 12075
Client ID: Digester #3	Batch ID: 4999	TestNo: E353.2 A4500-NO3-E		Analysis Date: 6/1/2020	SeqNo: 180141
Analyte	Result	PQL SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate Nitrogen	1.07	0.0335 0.1674 0.8764	116	70 130	
Sample ID: 20051069-01AMSD	SampType: MSD	TestCode: NO2NO3_SL Units: %Wt-dry	y	Prep Date: 6/1/2020	RunNo: 12075
Client ID: Digester #3	Batch ID: 4999	TestNo: E353.2 A4500-NO3-E	1. S	Analysis Date: 6/1/2020	SeqNo: 180142
Analyte	Result	PQL SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Nitrate Nitrogen	1.06	0.0335 0.1674 0.8764	112	70 130 1.070	0.546 25
Sample ID: MB-4999	SampType: MBLK	TestCode: NO2NO3_SL Units: %Wt		Prep Date: 6/1/2020	RunNo: 12075
Client ID: PBS	Batch ID: 4999	TestNo: E353.2 A4500-NO3-E		Analysis Date: 6/1/2020	SeqNo: 183508
Analyte	Result	PQL SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Qualifiers:

CI Sample container temperature is out of limit as specified at testcode J PL

Analyte detected below quantitation limits

- E Value above quantitation range
- Recovery outside comtrol limits due to Matrix Interference MI RL
- Holding times for preparation or analysis exceed Н ND Not Detected at the Reporting Limit

Permit Limit

Reporting Detection Limit

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

•														
Sample ID: LCS-R11996 Client ID: LCSW	SampType: LCS Batch ID: R11996		de: PH_W No: A4500-H+R	Units: pH Uni 3	ts	Prep Da Analysis Da)20	RunNo: 119 SeqNo: 178					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
pH	6.9	0.1	6.9	0	100	97.1	102.9							
Sample ID: 20051069-01ADUF Client ID: Digester #3	SampType: DUP Batch ID: R11996		de: PH_W No: A4500-H+R	Units: pH Uni 3	ts	Prep Da Analysis Da)20	RunNo: 119 SeqNo: 178					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
рН	3.2	0.1						3.2	0	10	RH			

 Qualifiers:
 C1
 Sample container temperature is out of limit as specified at testcode

 J
 Analyte detected below quantitation limits

E Value above quantitation range

PL Permit Limit

- MI Recovery outside comtrol limits due to Matrix Interference
- RL Reporting Detection Limit

- H Holding times for preparation or analysis exceed
- ND Not Detected at the Reporting Limit

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

1

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon Project: Digester #3-AM	ENDED		TestCode: PHOS-T_SL
Sample ID: MB-5030 Client ID: PBS Analyte Phosphorus, Total (As P)	SampType: MBLK Batch ID: 5030 Result ND	TestCode: PHOS-T_SL Units: %Wt TestNo: A4500-P-E A4500-P-E PQL SPK value SPK Ref Val %REC 0.00000250	Prep Date: 6/5/2020 RunNo: 12235 Analysis Date: 6/5/2020 SeqNo: 182696 LowLimit HighLimit RPD RPDLimit Qual
Sample ID: LCS-5030 Client ID: LCSS	SampType: LCS Batch ID: 5030		Prep Date: 6/5/2020 RunNo: 12235 Analysis Date: 6/5/2020 SeqNo: 182697
Analyte Phosphorus, Total (As P)	0.149	PQL SPK value SPK Ref Val %REC 0.0124 0.1560 0 95.6	LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 50 150
Sample ID: 20051069-01AMS Client ID: Digester #3 Analyte Phosphorus, Total (As P)	SampType: MS Batch ID: 5030 Result 9.67	TestCode:PHOS-T_SLUnits:% Wt-dryTestNo:A4500-P-EA4500-P-EPQLSPK valueSPK Ref Val%REC0.4196.7112.939100	Prep Date: 6/5/2020 RunNo: 12235 Analysis Date: 6/5/2020 SeqNo: 182699 LowLimit HighLimit RPD RPD RPDLimit Qual 75 125
Sample ID: 20051069-01AMSD Client ID: Digester #3 Analyte	SampType: MSD Batch ID: 5030 Result	TestCode: PHOS-T_SL Units: %Wt-dry TestNo: A4500-P-E A4500-P-E PQL SPK value SPK Ref Val %REC	Prep Date: 6/5/2020 RunNo: 12235 Analysis Date: 6/5/2020 SeqNo: 182700 LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual
Phosphorus, Total (As P)	9.64	0.419 6.711 2.939 99.9	75 125 9.671 0.273 25

Qualifiers: CL Sample container temperature is out of limit as specified at testcode J

Analyte detected below quantitation limits

Е Value above quantitation range

Recovery outside comtrol limits due to Matrix Interference MI

Н Holding times for preparation or analysis exceed ND Not Detected at the Reporting Limit

PL Permit Limit RL Reporting Detection Limit

1

L

1

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon Project: Digester #3-AM	ENDED		TestCode:	SOLIDS_TOT_SL
Sample ID: MB-R12096 Client ID: PBS Analyte	SampType: MBLK Batch ID: R12096 Result	TestCode: S OLIDS_TOT Units: % TestNo: A2540G PQL SPK value SPK Ref Val	Prep Date: Analysis Date: 5/29/2020 %REC LowLimit HighLimit RPD Ref Val	RunNo: 12096 SeqNo: 180562 %RPD RPDLimit Qual
Total Solids	ND	0.0100		
Sample ID: 20051069-01ADUP Client ID: Digester #3	SampType: DUP Batch ID: R12096	TestCode: SOLIDS_TOT Units: % TestNo: A2540G	Prep Date: Analysis Date: 5/29/2020	RunNo: 12096 SeqNo: 180564
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Solids	1.49	0.0100	1.490	0 5

Qualifiers:

CI Sample container temperature is out of limit as specified at testcode

E Value above quantitation range

J Analyte detected below quantitation limits PL

MI

Permit Limit

- Recovery outside comtrol limits due to Matrix Interference RL Reporting Detection Limit
- ND

Н

Holding times for preparation or analysis exceed Not Detected at the Reporting Limit

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Client: City of Bandon Project: Digester #3-AM	ENDED		TestCode:	SOLIDS_VOL_SL
Sample ID: MB-R12096 Client ID: PBS Analyte	SampType: MBLK Batch ID: R12096 Result	TestCode: SOLIDS_VOL Units: % TestNo: E160.4 PQL SPK value SPK Ref Val	Prep Date: Analysis Date: 5/29/2020 %REC LowLimit HighLimit RPD Ref Val	RunNo: 12096 SeqNo: 180565 %RPD RPDLimit Qual
Volatile Solids	ND	0.0100		
Sample ID: 20051069-01ADUP Client ID: Digester #3 Analyte	SampType: DUP Batch ID: R12096 Result	TestCode: SOLIDS_VOL Units: % TestNo: E160.4 PQL SPK value SPK Ref Val	Prep Date: Analysis Date: 5/29/2020	RunNo: 12096 SeqNo: 180567
Volatile Solids	76.9	0.0100	%REC LowLimit HighLimit RPD Ref Val	0.130 5

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits PL Permit Limit

- MI Recovery outside comtrol limits due to Matrix Interference
- RL. Reporting Detection Limit

- H Holding times for preparation or analysis exceed
- ND Not Detected at the Reporting Limit

L

Neilson Research Corporation 245 S Grape St Medford, OR 97501 TEL: (541) 770-5678 FAX: (541) 770-2901 Website: www.nrclabs.com

1 ſ

L .

1

QC SUMMARY REPORT

WO#: 20051069

22-Jun-20

Project: Digester #3-AM	ENDED						Т	'estCode: 1	KN_SL		
Sample ID: MB-4975	SampType: MBLK		de: TKN_SL	Units: %Wt		Prep Date	: 5/28/20	20	RunNo: 12	036	
Client ID: PBS	Batch ID: 4975	Test	No: E351.2	E351.1		Analysis Date	5/29/20	20	SeqNo: 179	9542	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Total	ND	0.000625									
Sample ID: LCS-4975	SampType: LCS	TestCo	de: TKN_SL	Units: %Wt		Prep Date	5/28/20	20	RunNo: 12	036	
Client ID: LCSS	Batch ID: 4975	Test	No: E351.2	E351.1		Analysis Date	: 5/29/20	20	SeqNo: 179	9543	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Total	0.364	0.126	0.3590	0	101	50	145				
Sample ID: 20050703-01AMS	SampType: MS	TestCo	de: TKN_SL	Units: %Wt-	dry	Prep Date	5/28/20	20	RunNo: 12	036	_
Client ID: BatchQC	Batch ID: 4975	Test	No: E351.2	E351.1		Analysis Date	: 5/29/20	20	SeqNo: 179		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Total	5. 2 2	1.29	1.692	3.673	91.6	75	125				
Sample ID: 20050703-01AMSD	SampType: MSD	TestCo	de: TKN_SL	Units: %Wt-	dry	Prep Date	: 5/28/20	20	RunNo: 120	036	
Client ID: BatchQC	Batch ID: 4975	Test	No: E351.2	E351.1		Analysis Date	: 5/29/20	20	SeqNo: 179	9551	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Total	5.13	1.29	1.692	3.673	86.2	75	125	5.222	1.75	25	

Qualifiers:	CL	Sample container temperature is out of limit as specified at testcode
	J	Analyte detected below quantitation limits

Е Value above quantitation range

MI Recovery outside comtrol limits due to Matrix Interference

Н Holding times for preparation or analysis exceed ND Not Detected at the Reporting Limit

PL Permit Limit
> RL Reporting Detection Limit

6	NEILSON RESEARCH CORPORATION		This C	hain of Custod	Chain of ly is a LEGAL	DOC	UMENT ar	d must b	cord	out acc	urately.						Page of
ection A	CONFORMION		Section E					Secti							ection D		
Required Clie	ent Information			Project Inform	mation				ce Infor								o Scheduling)
Company: 0	City of Bandon		Project Na			_		Atten	_	Bill Niel		_			X Standard	1: 10 Busin	ness Days
Address: F	PO Box 67		Project Number: Direster #3 Report To: Store James					Comp	Company Name: City of Bandon					-	Priority: 5	5 Busines	s Days (List × 1.50)
E	Bandon, OR 97411							Addre	ess: I	PO Box	x 67			-	Express:	3 Busine	ss Days (List × 1.75)
mail: wastewater@cityofbandon.org			Copy To:							Bandor	n, OR 9	7411		-	Rush: 2 8	Business	Days (List × 2.00)
Phone:								P.O.	#					_	Rush: Sa	ame Day ((List × 3.00)
Collected By ((Print): Steele Tame	20													1	Authorize	d Yes No
Collected By ((Sign).	(-»							Analysi	is Requ	uested	1					
Email Report	Jup	ort									1						
Section E Sample Infor	rmation			2.4		of Containers	when		recel	funz				P P	NRC Workord (Lab Use O Remark	nly)	05069
	Sample ID	Comp/Grab	Matrix*	Date Collected	Time Collected	No.	21		R	0					Field Da		NRC Sample # (Lab Use Only)
Direct	er 年3	Grab	SL	5-27.60	0910												01
11001								_									
wilco t		_				_						-	-				
<u>all cost</u>													_				
in 13 cast																	
<u> </u>																	
<i>v</i> (<i>j aa</i> †																	
*Matrix: DW Section F Relinquish/	- Drinking Water WW - Wastewater		bil/Solid S	L - Sludge O		pe OT	- Other			Date			ime	. 6	Section G Lab Use Only Temp: 2. (6	
*Matrix: DW Section F Relinquish/	- Drinking Water WW - Wastewater		bil/Solid S			int			5-2		6.4				Lab Use Only Temp: 2. (4°C +/- 2°C:	X Yes	and the second se
*Matrix: DW Section F Relinquish/	- Drinking Water WW - Wastewater Receive Sign d By:		bil/Solid S		Pi	int			5-3		64				Lab Use Only Temp: Q. (4°C +/- 2°C: Received on I	6 <u>X</u> Yes Ice: X	Yes No
*Matrix: DW Section F Relinquish/I Relinquished	- Drinking Water WW - Wastewater Receive Sign d By: Julyan y:		bil/Solid S		Pi	int			5-2		64				Lab Use Only Temp: 2. (4°C +/- 2°C: Received on I Number of Bo	G ✓ Yes Ice: X ottles Rec	Yes No eived: 7
*Matrix: DW Section F Relinquish/I Relinquished Received By	- Drinking Water WW - Wastewater Receive Sigr d By: Jangar y: d By:		bil/Solid S		Pi	int			5-2		6.1				Lab Use Only Temp: Q. (4°C +/- 2°C: Received on I Number of Bo pH Checked:	$\frac{x}{y}$ Yes lce: $\frac{x}{y}$	Yes <u>No</u> eived: 2
*Matrix: DW Section F Relinquished Received By Relinquished	- Drinking Water WW - Wastewater Receive Sigr d By: Julyan y: d By: y:		pil/Solid S	Steve	Pi	int Se S	<u> </u>			1-1	2020	05			Lab Use Only Temp: 2 (4°C +/- 2°C: Received on I Number of Bo pH Checked: COC Seals In	Ves Ice: X Dottles Rec VIQ	Yes No eived: 7

		NEILSON RESEARCH CORPORATION	TEL: (541) 770-5678 F	245 Medford FAX: (54	S Grape S I, OR 9750	Sam	ple Log-In (Check Lis
Clie	ent Name:	Bandon, Cityof	Work Order Number:	200510)69		ReptNo	: 1
Log	ged by:	Vincenza Gill	5/28/2020 10:45:00 AM	٨		Vinenge Gi	ll.	
Cor	mpleted By:	Tamra Schmedemann	5/28/2020 4:46:34 PM			Tama S	Monedeman	
Rev	viewed By:	Tamra Schmedemann	5/28/2020 4:46:38 PM			Tama S	chmedernorm chmedernorm	
Cha	ain of Cu	stody						
1.	Is Chain of	Custody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	he sample delivered?		<u>UPS</u>				
Log					-			
3.	Coolers are	e present?		Yes		No 🗌	NA L	
4	Shipping c	ontainer/cooler in good condition	on?	Yes	v	No 🗌		,
		eals intact on shipping contained		Yes		No 🗌	Not Present	0
	No.	Seal Date		Signe	ed By:			
5.	Was an att	tempt made to cool the sample	es?	Yes		No 🗌	NA 🗌	
6.	Were all sa	amples received at a temperat	ure of >0° C to 6.0°C	Yes		No 🗌		<u>n</u>
7.	Sample(s)	in proper container(s)?		Yes		No 🗆		
8.	Sufficient s	ample volume for indicated te	st(s)?	Yes	-	No 🗌		
9.	Are sample	es (except VOA and ONG) pro	perly preserved?	Yes		No 🗌		
10.	Was prese	rvative added to bottles?		Yes		No 🗌	NA 🖌	
							NA	4
11.	Is the head	Ispace in the VOA vials less th	an 1/4 inch or 6 mm?	Yes		No 🗌	No VOA Vials 🗹	
12.	Were any s	sample containers received bro	oken?	100		No 🗹		
13.		rwork match bottle labels? epancies on chain of custody)		Yes	v	No 🗌		
14.		es correctly identified on Chain	of Custody?	Yes		No 🗌		
		hat analyses were requested?		Yes	1	No 🗌		
	Were all ho	olding times able to be met? y customer for authorization.)		Yes		No 🗌		
Spe		dling (if applicable)						
		notified of all discrepancies wi	th this order?	Yes		No 🗌	NA 🗹	
	Perso	n Notified:	Date:					
	By Wi	nom:	Via:	eMai	I 🗌 Pho	ne 🗌 Fax	In Person	
	Regar	ding:						
	Client	Instructions:						

Ł

Ł

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	2.6	Good				TRS

Data Flags WO#: 20051069 Date: 6/10/2020

- В Analyte detected in the associated method blank. BA BOD Alternative Calculation: The initial results performed by Standard Methods did not fall within parameters of the Standard Methods calculation. An alternate approved calculation was performed using the HACH method and the value reported is an estimated concentration. C Sample(s) does not meet NELAP/ORELAP sample acceptance criteria. See Case Narrative. C1 Sample(s) does not meet NELAP/ORELAP sample acceptance criteria for temperature. CF Results confirmed by re-analysis. Cleanup performed as specified by method. CU The diesel elution pattern for the sample is not typical. D1 D2 The sample appears to be a heavier hydrocarbon range than diesel. D3 The sample appears to be a lighter hydrocarbon range than diesel. D4 Detected hydrocarbons do not have pattern and range consistent with typical petroleum products and may be due to biogenic interference. Detected hydrocarbons in the diesel range appear to be weathered diesel. D5 Estimated value. E Elevated reporting limit due to matrix. Report limits (MDLs, MRLs & PQLs) are adjusted based on variations in sample ER preparation amounts, analytical dilutions, and percent solids, where applicable. FC Fecal Coliforms: Sample(s) received past 40 CFR Part 136 specified holding time. Results reported as estimated values. G1 The gasoline elution pattern for the sample is not typical. G2 The sample appears to be a heavier hydrocarbon range than gasoline. The sample appears to be a lighter hydrocarbon range than gasoline. G3 G4 Detected hydrocarbons in the gasoline range appear to be weathered gasoline. HP Sample re-analysis performed outside of method specified holding time. Sample received outside of method specified holding time. HR HS Sample analyzed for volatile organics contained headspace. HTD At the client's request, the sample was analyzed outside of method specified holding time. Analysis performed outside of method specified holding time. Η Analyte detected below the Minimum Reporting Limit (MRL) and above the Method Detection Limit (MDL). The J flag result is an estimated value and the user should be aware that this data is of limited reliability. Dissolved metals were not filtered within 15 minutes of collection per 40 CFR Part 136. L Surrogate, Duplicate Sample (DUP) or Matrix Spikes recoveries are out of control limits due to matrix interference. Sample MI results may be biased. See Case Narrative on page 2 of report. N NLR No Legionella Recovered. PLR Presence of Legionella Recovered. Initial calibration verification (ICV), continuing calibration verification (CCV) or laboratory control sample (LCS) exceeded Q high recovery limits, but associated samples are non-detect and the sample results are not affected. Data meets EPA/NELAP requirements. Relative percent difference (RPD) is outside of the accepted recovery limits. R Relative percent difference (RPD) is outside of the accepted recovery limits. However, analyses are not controlled on RPD R1 values for sample concentrations that are less than the reporting limit. The relative percent difference (RPD) and/or percent recovery for the duplicate (DUP) or matrix spike (MS)/matrix spike **R**3 duplicate (MSD) cannot be accurately calculated due to the concentration of analyte already present in the sample. R4 Duplicate analysis failed due to result being at or near the method reporting limit. Surrogate and/or matrix spike recovery is outside of the accepted recovery limits. Sample results may be biased. S Surrogate or matrix spike recovery is outside of control limits due to dilution necessary for analysis. S1 SC Sub-contracted to another laboratory for analysis. SP Sample(s) were not collected per EPA Method 5035A protocols. The results are considered minimum values. Value exceeds regulatory level for TCLP contaminant. # X1 The motor oil elution pattern for the sample is not typical.
- X1 The motor oil elution pattern for the sample is not typical.
- X2 The sample appears to be a heavier hydrocarbon range than motor oil.
- X3 The sample appears to be a lighter hydrocarbon range than motor oil.
- * Value exceeds Maximum Contaminant Level or is outside the acceptable range.

CITY OF BANDON BIOSOLIDS MANAGEMENT PLAN 2020

City of Bandon Biosolids Management Plan 2020

File Number: 5664 Permit Number: 101546

I Treatment Facility

Introduction:

The City of Bandon (pop. 3,235) owns and operates a municipal sewage collection and treatment system under National Discharge Elimination System (NPDES) permit number 101546. Wastewater processed by the sewage treatment works is principally of domestic origin. The current facility was upgraded in 1994. The facility is an activated sludge plant with aerobic digesters. There is no required local pretreatment permit for this facility. Treated effluent from the treatment plant is discharged to the Coquille River (RM 11), in Coos County, Oregon.

A) Wastewater Processing:

Bandon operates an activated sludge plant with aerobic digesters. Designed average dry weather flow is approximately 0.45 million gallons per day (MGD). Influent passes through the headwork (screening and grit removal, flow monitoring, automatic sampling, flow splitting, and grit separation). The plant is run in plug flow, from the headwork in flow enters two aeration basins. Aeration basin #1 is 157,000 gallons, and #2 is 141,000 gallons. Aeration basin effluent is transferred to one of two secondary clarifiers (190,246 gallons each) where solids are allowed to settle out. Portions of the solids are returned to the aeration basin and portions of the solids are wasted to the aerobic digesters. Bandon operates a three-cell aerobic digester. The cells are 128,000 gallons (#1),133,000 (#2), and 133,000 (#3). The aerobic digester is run in series. Sludge can be removed from the digester directly or pumped to the sludge thickening process where it can thicken before land application or pump to the drying beds (47,270 gallons). Sludge can receive further treatment by desiccation in one of two drying beds prior to being land applied on a regional authorized biosolids site(s). Clarifier effluent is directed to ultraviolet channels for disinfection and discharged to the Coquille River.

B) Solids Processing:

There are three potential end routes for generating biosolids from this facility and they are:

- 1) Liquid Biosolids removed from the aerobic digester
- Dewatered Biosolids taken from the sludge thickening process (after aerobic digester) and
- 3) Cake Biosolids from the air-drying beds
- C) Solids Storage Structure:

From the aerobic digesters sludge can be pumped to a truck for land application or to the sludge thicken building. Thickened biosolid can be pumped into a trailer for land application, or pumped to one of two drying beds (total about 47,000 gallons). Biosolids can receive further treatment by desiccation in the drying beds prior to being land applied. All Class B biosolids are land applied on a regional DEQ authorized land application site(s).

D) Septage Receiving Facility:

No septage is received at the Bandon wastewater treatment facility.

E) Pretreatment Program:

The city's industrial wastewater pretreatment program protects the environment and the area's wastewater collection, treatment facilities and biosolids quality by regulating potentially contaminated wastewater discharges from commercial and industrial activities.

Bandon's Ordinance No. 1254 maintains biosolids quality; currently the city's biosolids are at or below 50% of the "clean sludge" criteria identified in EPA 40 CFR Part 503.13 and Oregon DEQ's Oregon Administrative Rules Chapter 340 Division 50.

II Solid Treatment Processes

The EPA's 40 CFR Part 503 and DEQ's OAR 340-50 allow permittees to use EPA approved alternatives to satisfy Class A and B biosolids pathogen and vector attraction reduction criteria. The permittee must notify the Department in writing and get approval prior to any process change that would utilize pathogen reduction or vector attraction reduction alternatives other than their primary reduction alternatives contained in this management plan. The permittee must also certify that the alternatives used are EPA approved and that sampling and monitoring conforms to the 40 CFR 503 and OAR 340-050 regulations.

Pathogen Reduction

To meet the Part 503 regulatory requirements, pathogen reduction must be met before vector attraction reduction or at the same time vector attraction reduction is achieved.

Class A Biosolids

With all Class A alternatives microbial monitoring for fecal coliforms or *Salmonella* sp. is required (see section A and B below). This management plan lists the primary alternative and options employed by the permittee to meet Class A and B biosolids criteria.

A) Monitoring for Fecal Coliform or Salmonella sp.

Monitoring for Fecal Coliform or *Salmonella* sp. is required to detect growth of bacterial pathogens. Because Class A biosolids may be used without site restrictions, all Class A material must be tested to show that the microbial requirements are met at the time when it is ready to be used, disposed, sold or given away. In addition to meeting process requirements, Class A biosolids must meet one of the following requirements:

- Either the density of the fecal coliforms in the biosolids be less than 1,000 MPN per gram total solids (dry gram weight),
- Or the density of Salmonella sp. bacterial in the biosolids be less than 3 MPN per 4 grams of total solids (dry weight basis).

Unlike Class B biosolids, Class A requirements are not based on an average value. Sampling for Class A biosolids consists of at least seven (7) discrete samples taken over a 2 week period. Test results are required before Class A material can be released for use or disposal. The microbial requirement that a Class A biosolids must meet is either:

- At the time of use or disposal, or
- At the time the biosolids are prepared for sale or given away in a bag or other container for land application, or
- At time the biosolid or material derived from the biosolid is prepared to meet the requirements in 503.10(b), 503.10(c), 503.10(e) or 503.10(f).
- B) Class A Pathogen Reduction Alternatives

Alt. 1) Sewage Sludge treated in known Processes 503.32(a)(5)

This requirement relies on comprehensive monitoring of bacteria, enteric viruses and viable helminth ova to demonstrate adequate reduction of pathogens:

- Either the density of the fecal coliforms in the sewage sludge be less than 1,000 MPN per gram total solids (dry gram weight), *or* the density of *Salmonella* sp. bacteria in the sewage be less than 3 MPN per 4 grams of total solids (dry weight basis).
- The density of enteric viruses in the sewage sludge must be test prior to pathogen reduction treatment and then again after pathogen treatment at which time the enteric viruses must be less than 1PFU per 4 grams of total solids (dry weight basis).
- The density of viable helminth ova in the sewage sludge must be tested prior to pathogen reduction treatment and then again after pathogen treatment at which time the viable helminth ova must be less than 1PFU per 4 grams of total solids (dry weight bases).

Class B biosolids can be met by using one of three alternatives, the two primary alternatives used by this facility are Alt. 1) Monitor sewage sludge for fecal coliform 503.32(b)(2), and Alt. 2) Use Process to Significantly Reduce Pathogen (PSRP) 503.32(b)(3).

Alt. 1) Monitor sewage sludge for fecal coliform 503.32(b)(2) requires that seven samples of treated sewage sludge (biosolids) be collected and that the geometric mean fecal coliform density of these samples be less than 2 million MPN per dry gram biosolid (dry weight basis).

Alt. 2) Use Process to Significantly Reduce Pathogen (PSRP) 503.32(b)(3)* considers sludge treated in one of the PSRP's listed in Appendix B of the 40 CFR Part 503 to meet Class B biosolid criteria for pathogen reduction. For this facility the following PSRP's are primarily used:

- #1 Aerobic digestion, sludge is treated in air/oxygen for a specified residence time at a specified temperature. Values of the mean cell residence time and temperature shall be between 40 days at 20C (6SF) and 60 days at 15C (59F)
- #2 Air Drying, sludge air dried on beds for a minimum of three months ambient temperature above OC (32F) two out of the three months
- #3 Lime stabilization, sufficient lime is added to the sewage sludge to raise the pH of the sewage sludge to 12 with no further addition of alkali agent, and maintain sludge pH of 12 active-mix for two hours.

* The Department recommends the permittee still collect and run a geometric mean for fecal coliform density on a representative sample each year to ensure the pathogen reduction is less than 2 million MPN per dry gram biosolid (dry weight basis).

C) Vector Attraction

This facility primarily uses the following vector attraction reduction options:

Opt. 1) The percent of volatile solid reduction calculation to use for anaerobic digester that is decanted and that does not have appreciable grit accumulation would be the Van Kleeck or Approximate Mass Balance (AMB) equation depending upon the percent of solids in the decantant (Attachment A).

Opt. 2) To meet the biosolid vector attraction reduction requirements an aerobic digester must provide a 40 day detention time at 20C in a completely mixed high rate digester in order to achieve a volatile solids reduction of 38% or more. There are alternative volatile solid reduction methods that are deemed equivalent to the 38% volatile solid reduction criteria under the EPA's and the DEQ's regulations.

Opt. 3) When the 38% volatile solids reduction cannot be met for aerobically treated solids vector attraction reduction can be demonstrated by showing a less than 15% additional volatile solid loss during bench-scale aerobic batch digestion (2% TS or less) of the sewage sludge for 30 additional days at 20C (68F).

Opt. 4) The Specific Oxygen Uptake Rate (SOUR) for sewage sludge treated in an aerobic process shall be equal to or less than 1.5 milligrams (mg) of oxygen per hour per gram of total solids (2% or less total solids, dry weight basis) at a temperature of 20C.

Opt. 5) Aerobic treatment of sludge for at least 14 days at over 40C (104F), during the process the average temperature must be over 45C (Compost).

Opt. 6) The pH of the sewage sludge shall be raised to a pH of 12 or higher by the addition of alkali agent and without the addition of more alkali agent. The batch shall remain at a pH of 12 or, for two hours or more active mix; and at a pH of 11.5 or higher for an additional 22 hours.

Opt. 7) The sewage sludge must achieve 75% solid by drying prior to mixing with other materials. Sewage sludge treated in aerobic or anaerobic process (i.e. sewage sludge that does not contain unstabilized solids generated in primary wastewater treatment).

Opt. 8) Sewage sludge land applied shall be incorporated into the soil within six hours after application or placement on the land.

III Biosolid Characteristics

Bandon's treatment utilizes an activated sludge process. The treatment facility wastes activated sludge from the secondary clarifiers to the aerobic digester. The sludge under goes a minimum of 60 days of digestion at a minimum temperature of

15C prior to removal and staff performing a volatile solids reduction calculation. For the past five years the average volatile solids reduction criteria has been achieved by Bandon's wastewater treatment facility.

Annually, Bandon has generated approximately 33 dry tons of biosolids. For the year 2020, Bandon land applied 33 tons (29.9 dry metric tons) of Class B biosolid. Under the 40 CFR Part 503, Bandon is required to sample biosolids two times per year. Frequency of monitoring depends on the amount biosolid generated that is marketed to be sold or given away, land application and surface disposal.

Sampling

The following are sampling reference publications: "Sludge Sampling and Analysis Guidance Document", (EPA 1993) and ASTM Standard E 300-86, "Standard Practice for Sampling Industrial Chemicals" (ASTM 1992a).

- Aerobic Digesters Sample location: Sample port on discharge line from the digester to the storage lagoon.
- 2) Number and type of sample taken per day: Class B Biosolids, composite of seven or more discrete samples collected throughout the pump over sampling period.

Sample storage and transport: Samples are stored at 4C in ice chest or refrigerator. Samples are transported in ice chest to maintain temperature during delivery to laboratory. Pathogen samples are delivered to lab within six hours of sample collection.

Sample analysis method: EPA 9045; EPA 160.3; EPA 160.4; SM 4500-NH3B; EPA 353.2; EPA 365.3; EPA 351.3; SW-846 7060; SW-846 6010; SW-846; SW-846 7481; SW-847 7471; SW-846 7740; SM18th, 9221E.1; SM 18:92600.1; ASTM D 4994-89; EPA 600/1-87/014; EPA 8240; EPA 1613; EPA 8270; EPA 1613B; EPA 1668 (many include one or more of the referenced methods).

3) Sludge Thickening Process

Sample location: Center of eight quadrants from the basin.

Number and type of sample taken per event: Composite from all sampling points in each lagoon. Sample includes the entire proposed sludge column to be dredged (not the water cap *above* the sludge layer).

Sample storage and transport: Composite sample is stored at 4C in ice chest or refrigerator. Samples are transported in ice chest to maintain temperature during delivery to laboratory. Pathogen samples are delivered to lab within six hours of

sample collection.

Sample analysis method: EPA 9045; EPA 160.3; EPA 160.4; SM 4500-NH3B; EPA 353.2; EPA 365.3; EPA 351.3; SW-846 7060; SW-846 6010; SW-846; SW-846 7481; SW-847 7471; SW-846 7740; SM 18th, 9221E.1; SM 18:92600.1; ASTM D 4994-89; EPA 600/1-87/014; EPA 8240; EPA 1613; EPA 8270; EPA 1613B; EPA 1668 (may include one or more of the referenced methods).

4) Air Drying Beds (ADB)

Sample location: Center of four quadrants from each ADB in service.

Number and type of sample taken per batch: Four discrete samples from each ADB in service are mixed together to form a composite sample, a minimum of six times per year.

Sample storage and transport: Samples are stored at 4C in ice chest or refrigerator. Samples are transported in ice chest to maintain temperature during delivery to laboratory. Pathogen samples are delivered to lab within six hours of sample collection.

Sample analysis method: EPA 9045; EPA 160,3; EPA 160.4; SM 4500-NH3B; EPA 353.2; EPA 365.3; EPA 351.3; SW-846 7060; SW-846 6010; SW-846; SW-846 7481; SW-847 7471; SW-846 7740; SM18th, 9221E.1; SM 18:92600.1; ASTM 0 4994-89; EPA 600/1-87/014; EPA 8240; EPA 1613; EPA 8270; EPA 1613B; EPA 1668 (may include one or more of the referenced methods).

Compost

Sample location: Random depths and locations within the compost pile.

Number and type of sample taken per batch: seven discrete samples are mixed together to form a composite sample for metal analysis. <u>NOTE</u>: for Class A Biosolid seven discrete samples are required for pathogen testing.

Sample storage and transport: Sample is stored at 4C in ice chest or refrigerator. Samples are transported in ice chest to maintain temperature during delivery to laboratory. Pathogen samples are delivered to lab within six hours of sample collection.

Sample analysis method: EPA 9045; EPA 160.3; EPA 160.4; SM 4500-NH3B; EPA 353.2; EPA 365.3; EPA 351.3; SW-846 7060; SW-846 6010; SW-846; SW-846 7481; SW-847 7471; SW-846 7740; SM 18th, 9221E.1; SM 18:92600.1; ASTM 0 4994-89; EPA 600/1-87/014; EPA 8240; EPA 1613; EPA 8270; EPA 1613B; EPA 1668 (may include one or more of the referenced methods).

Biosolid Analysis:

Biosolid Chemical Analysis:

From Bandon's 2020 biosolids analysis the following is a representative sampling of the biosolid metal concentration.

Metal	Lb./acre-yr.	Site life years	
Arsenic (As)	0.1299	345	
Cadmium (Cd)	0.0026	16412	
Chromium (Cr)	0.0000		
Copper (Cu)	0.0260	63124	
Lead (PB)	0.1299	2524	
Mercury (Hg)	0.0010	18102	
Molybdenum (Mo)	0.1299	151	
Nickel (Ni)	0.0130	35349	
Selenium (Se)	0.1299	841	
Zinc (Zn)	0.1299	23566	

The site life would be limited to 151 years based on the Molybdenum loading Bandon's 2020 biosolid analysis (Attachment B).

Biosolid Nutrient Analysis:

For the year 2020, the biosolids contained about 1001 pounds lbs. total nitrogen (N), Bandon needs approximately 10.01 acres to land apply on to handle their annual biosolid nitrogen production.

IV Biosolids Beneficial Reuse Program

Transportation and Land Application:

Biosolids are off loaded into city owned tanker truck at the plant. The biosolids loading area is impounded in case of accidental spillage of biosolids during the truck loading process. This area has a drain that ties back into the facility. During the summer months Bandon's biosolids are land applied on one site totaling 18 acres. The biosolid land application sites are capable of assimilating Bandon's annual total nitrogen production. The perennial agronomic biosolid land application rate for pastures and grass is 140 lb. available N per acre-yr. The agronomic land application rate for annual rye grass, the predominate crop utilized by Bandon's land application program, is 100 lb. available N per acre-yr.

Land application: Bandon land applies on authorized pastures and farmlands. All DEQ site authorizations for Bandon are part of Bandon's Biosolid Management Plan. Bandon currently has 18 acres that are authorized for land application.

Biosolids Site Management Information:

Site	Use/Acres	Lb. N/Acre	Lb. N/Site 482	
Dew Valley	18	100		
Total	18	100	482	

Long term biosolid application rates and site restrictions are contained in the biosolid site authorization letter. References to the OAR 340-50, the 40 CFR Part 503, site setbacks, site agronomic loading rates, land application restrictions and site restrictions are also detailed out in the site authorization letter.

BIOSOLIDS LAND APPLICATION PLAN

Agronomic Application Rate and Site Crops

Biosolids is required to be land applied to a site at a rate that is equal to or less than the agronomic rate for the site. An agronomic rate is the quantity of biosolids application rate designed to provide the annual total amount of nitrogen needed by a crop and to minimize the amount of nitrogen passing below the root zone of the crop or vegetation to groundwater.

Biosolids application rates for the Bandon sites were developed based on Oregon State University (OSU) Extension Service Fertilizer Guide: Seed Production Agronomy FG 63. The annual application rate for hay is 100 available nitrogen (N) per acre, unless the application site demonstrates additional nitrogen is required to match crop uptake rates. (*Note: If more than one type of crop is used at the same site, then state each type of crop and the application rate.) The land application sites authorized for use can assimilate the total plant available nitrogen the Biosolids provides on an annual basis. Specific site agronomic loading rates are stated in the Department issued site authorization letters.

Site Inventory of Existing and Potential Sites

The City of Bandon currently land applies biosolids to the Department authorized sites listed in the . Surface application of biosolids is performed using a 4000 gallon tanker truck for delivery and a portable 6x6 Pioneer pump and spray cannon can be used. Site maps with the general location and size of existing authorized sites are included as Appendix <state letter> of this Biosolids management plan. The City of Bandon currently has 18 acres that are authorized for land application. This is an adequate land base for current <and future> operations, based on current Biosolids generation rates.

Biosolids Land Application Site Inventory *Note: May be included as an Appendix

Site Name/ Identifier	Site location (Lat/Long)	Area (ac)	Type of Crop	Application (lb. N/AC)	Time of year applied (month)	Harvest Cycle
Dew Valley	43 5' N	18	Hay	100	June/	Year
	123 21' W				October	

Site Selection Criteria for a New Site

If necessary, the City of Bandon will locate additional sites for land applying biosolids. Prior to using any site for land application, the City of Bandon is required to receive a written site authorization letter from the Department. The following site conditions will be considered when determining the suitability of a site for land application:

- All sites will be located on <agricultural/forest/reclamation> land in <name of county or more defined area>.
- A site should be on a stable geologic formation not subject to flooding or excessive run-off from adjacent land.
- Minimum depth to permanent groundwater should be four feet <and the minimum depth to temporary groundwater should be one foot at the time when application of liquid Biosolids occurs>.
- Topography should be suitable for normal agricultural operations. <Biosolids should not be land applied on bare soils when the slope exceeds 12 percent.>.
- Soil should have a minimum rooting depth of 24 inches.

Public Notification

The City of Bandon will notify the public of the proposed land application activity by phone and onsite visit. A current copy of the city's Bio-Solid Manage Report will be available for review. Each year prior to land application of alkalinestabilized domestic septage, the City of Bandon will verify for those sites to be used for the year that the property owners who received prior notification have not changed. If a property owner has changed, notification of the land application activity will be made to the new property owner and documented.

Site Management Practices

Site access restrictions and setbacks will be followed as required in OAR 340-050, and 40 CFR 503, and outlined in the Department's site authorization letters. The City of Bandon will ensure that access is restricted by appropriate means as necessary, such as fencing or posting of signs at the land application site. Biosolids land application will not occur in those areas designated as buffer strips and will be achieved through accurate measurement of the buffer area prior to commencing

land application.

Crop Management Practices

As listed in the Biosolids Land Application Site Inventory table on page 9, biosolids are applied to Hay. Timing of application and the harvest cycle of the crop are also listed. Soil conditions must be favorable for application such that runoff, leaching, or soil compaction does not occur. The timing of land application will take into consideration tilling and irrigation practices that may occur on an authorized site. **Note: If tilling or irrigation occurs, describe those practices.*

The overall management of nutrients at the land application sites takes into account the amount of Biosolids land applied, the amount of commercial fertilizers used and the amount of residual nutrients in the soil. When additional sources of nitrogen (e.g., commercial fertilizer) are applied to a site, then the application of Biosolids should be reduced to compensate for the additional nitrogen loading.

If Biosolids is applied to a site two out of three years at the agronomic rate, prior to the third application, a representative composite soil sample will be collected from grab sample taken across the entire site, and analyzed by an independent commercial laboratory. If existing nitrate-nitrogen levels in the soil profile are elevated, the Biosolids application rate, site management practices, or both will be adjusted. Application rates must be adjusted to account for available nitrogen carried over from previous applications. If crop removal of nitrogen exceeds the calculated agronomic rate, additional nitrogen may be required to sustain crop production.

V Contingency Options

In the event biosolids are spilled between the treatment facility and the land application site, Bandon's sewage treatment workers shall contain the spill. Lime, absorbent (for example sand) and remove spilled sludge solids spills with a front end loader or shovels and dispose of the spillage at a DEQ authorized application or disposal site. All spills into waters of the state or spills on the ground surface that are likely to enter waters of the state shall be reported immediately to Oregon Emergency Response System (OERS) at 1-800-452-0311 and your regional biosolids coordinator at 541-440-3338. All spills of 25 gallons or more on the ground surface shall be report to the regional biosolids coordinator at 541-440-3338.

VI Reporting

Daily Reporting and Recordkeeping (40 CFR 503.17 & 40 CFR 503.18):

Each year prior to land application of biosolids the source operators shall check to see if contiguous property owners have changed. The operators shall keep a record of contact (date, and/or written log of phone call with name and number, and/or

Xerox of postcard with name and address, etc.,) with contiguous property owners, which notify them of the biosolid land application practice. Operator shall provide this documentation in the Annual Biosolid Report.

Annual Reporting

The Annual Biosolid Report is due February 19, of each year for the previous year's land applied biosolids. Part of this report is the submittal of the daily site logs, which have the date, time, and quantity gal-lb. N/acre land applied for each day-tank-batch land applied. Site logs shall have a scaled map showing the site and the land application location that coincides with the daily site loading methods (truck spreader bar, irrigation cannon). Daily records should clearly show the location of daily biosolid loading site log.

<u>Annual Report shall have a signed copy of the certification statements for pathogen</u> reduction, vector attraction reduction and biosolids have been land applied at approved agronomic loading. Person signing statements should be the operator of record at the treatment plant. The operator shall show how the vector attraction reduction was met i.e., volatile solids reduction was achieved by time and temperature, the Van Kleeck equation filled out with digester records (MCRT), bench scale test, sour test or any other EPA approved alternative method appropriated for biosolid generated at your facility. Certification of pathogen reduction is required and is satisfied by submittal of test results in the Annual Biosoilds Report. <u>All</u> the previous year's biosolids sampling and analysis that is required by the permit shall be included in Bandon's Annual Biosolid Report (in the year's annual report appendix).

VII Certification Statement

The City of Bandon's facility is capable of meeting their primary alternatives for achieving Class B biosolid pathogen and vector attraction reduction criteria. As required under 40CFR 503.17 a signed Class B biosolid and vector attraction certification statements shall accompany all biosolids that are land applied (Attachment C). For Class B biosolid annual biosolid analysis must be provided upon request. Certification statements must also show conformance with nutrient and land application loading rates where applicable.

Attachment A

Calculation of the % volatile solids reduction for the aerobic digesters is to be based on comparison of a representative grab sample of total and volatile solids entering the digestion process (a weighted blend of the primary and secondary clarifier solids) and a representative composite sample of the solids existing in the sludge holding tanks.

Typically in the past we've used the Van Kleeck equation for digesters. The assumption is that there is no grit accumulation in the digester. This volatile solids equation assumes the fixed solids input equals the fixed solids output. The Van Kleeck equation is appropriate if the digester decantant is low in total solids. The Van Kleeck equation can be used to calculate the volatile solids reduction for a digester that decants provided VSb equal VSd.

FVSR: Fractional Volatile Solids Reduction FVSR = 1 - VSb * (1 - VSf) / VSf(1 - VSb)

- VSf Feed Sludge Fractional Volatile Solid, (kg/kg)
- VSb Digested Sludge (digester bottom) Fractional Volatile Solids, (kg/kg) VSd Decantant Fractional Volatile Solids

For this equation to be valid VSb must equal VSd.

For digesters with decant withdrawal (decant high in solids) and no grit accumulation, where the volatile and fixed concentrations are known for all streams as well as the volumetric flow rates for the decant and digester sludge then the Approximate Mass Balance equation should be used.

FVSR: Fractional Volatile Solids Reduction

FVSR = Fyb - Byb - Dyd / Fyb

Fyb (F) Feed Sludge Volumetric Flow Rate (m3/d)

- (yb) Feed Sludge Volatile Solids Concentration (kg/m3)
- Byb (B) Digester Sludge (bottom) Volumetric Flow Rate (M3/d)
- (Bb) Digester Sludge (bottom) Volatile Solids Concentration (kg/m3)
- Dyd (D) Decantate Volumetric Flow Rate (m3/d)
- (yd) Decantate Volumetric Solids Concentration (kg/m3)

Assumptions: Fixed Solids and Volatile Flows Streams.

Attachment B

Class B Biosolid Certification Statement

"I certify, under penalty of law, that the information used to determine compliance with Class B Pathogen Reduction requirements in 40 CFR Part 503.32 Sec.(b)(2) and Vector Attraction Reduction requirements 40 CFR part 503.33 Sec.(b)(1) was prepared under my direction and supervision in accordance with the system designed to ensure that qualified personnel properly gather and evaluated this information. I certify that all Class B biosolids land applied has met the abovementioned Pathogen and Vector Attraction Reduction requirements. I also certify that all Class B biosolids were land applied at ergonomic rates. I am aware that there are significant penalties for false certification including the possibility of fine and imprisonment.

Date / -22-2/ Signature

-

DMR PAGES SHOWING

MCRT, VOLATILE REDUCTION AND GALLONS REMOVED & SITE APPLICATION LOGS

ALKALIN		AMMO		NITRA			AEROBIC DI	BESTER 1				N I		AEROBIC DI	GESTER 2				¥ 1		AEROBIC DI	SECTED 1				%			
NF GAL	EFF 1 MGAL 1	INF MGA	EFF L MGAL	INF MG/L	EFF MG/L	MGAL	MLSS GALS	LBS	РН	DO PPM	TEMP	VOLA I	MGAL	MLSS GALS	MLSS LBS	PH	PPM	TEMP	VOLA I	MLSS MGA	MLSS GALS	MLSS LBS	РН	DO PPM	TEMP	VOLA I	DAYS SRT	MCRT	NOL
			1		1	10820			5.51	1.8	23.4	81	12440			6.42	2.3	23.2	80	14010			3.78	8.8	21.6	82		******	4
160	140	31.0	22.0		1	10460	87294	7615	6.60	1.0	22.2	79	11560	112461	10842	4.91	4.6	23.2	83	13260	100623	11128	3.79	7,9	21.9	82	11	46.9	5:
100			F		i	10160	56761	4810	6.82	1.3	20.3	8 2	10150	97837	8282	4.61	3.5	21.8	81	12280	100623	10305	4.11	2.7	21.3	82	9	41.2	4
					ĺ	9950			6.99	1.9	20.9	82	10510			3.32	2.7	22.7	82	12510			4.18	2.6	22.4	83			
170	150	20.0				10670	74768	6653	6.96	0.7	20,9	85	9060	108283	8182	2.91	5.0	23.0	95	12500	99926	10417	3.02	6.1	22.6	83 1	15	57.5	4
110	100	30.0	23.0		1	10680			6.49	1.5	20.3	82	9940			3.28	3.1	22.0	83	11710			2.79	6.5	21.7	82]			4
			ļ		1	9010			5.14	3.1	22.0	83	9310			2.84	6.0	22.9	86	12040			2.75	8.4	22.1	81			4
160	120	37.0	23.0			10080			6.96	1.6	21.9	86	10230			4.19	6.5	23.1	84	10780			2.67	5.8	22.2	85			3
100	1	01.0	20.0		1	11600			6.78	1.2	21.7	84	9760			3.85	4.1	22.6	84	5820			2.61	6.2	21.6	68			7
	ļ				1	11160	96689	8999	7.24	1.4	22.5	84	9370	106194	8299	2.84	6.2	23.4	84	11240	116639	10934	2,60	6.9	22.4	83	11	35.3	4
180	170	42.0	33.0]			10720	107650	9624	7.35	1.2	22.6	84	9370	79732	6231	2.62	6.5	23.2	84	9710	112461	9107	2.60	5.5	22.6	83	10	52.9	4
			1		1	11160			7.17	2,1	21.9	83	9920			6.37	1.5	23.2	83	10190			2.98	6.0	22.6	83			4
					1	10360			6,99	0.8	21.7	83	9800			6.46	1.2	22.9	82	10760			2.68	6.8	22.4	80			4
670	580	140.0	101.0	0.00	0.00	136830	423162	37701	87.00	19,6	282.3	1078	131420	504507	41836	54.62	53.2	297.2	1091	146810	530272	51891	40.56	80.2	287.4	1057	55	233.8	60
180 160	170 120	42.0 30.0	33.0 22,0	0.00	0.00	11600 9010	107650 56761	9624 4810	7.35	3.1 0.7	23.4 20.3	86 79	12440 9060	112461 79732	10842 6231	6.46 2.62	6.5 1.2	23.4 21.8	95 80	14010 5820	116639 99926	11128 9107	4.18	8.8 2.6	22.6 21.3	85 68	15	57.5 35.3	73
170	145	36.0	27.5	0.00	0.00	10305	82206	7217	6.25	1.9	21.9	83	10750	96097	8367	4.20	4.1	22.9	84 j		106054	10378	3.12	6.2	22.1	81	#DIV/01	46.8	4
																107													
180	170	42.0	33.0	0.00	0.00	11600	107650	9624	7.35	3.1	23.4		12440	443465	10010	C 10													7
160	120	30.0	22.0	0.00	0.00	9010	56761	4810	5.14	0.7	20.3	79	9060	112461 79732	10842 6231	6.46 2.62	6.5	23.4 21.8	95 80	14010 5820	116639 99926	11128 9107	4.18 2.60	8.8 2.6	22.6 21.3	85 68	15	57.5 35.3	

BANDON WASTEWATER TREATMENT PLANT MONITORING REPORT

•

BANDON WASTEWATER TREATMENT PLANT MONITORING REPORT

			1								R.M. 1,1
GALS (1	000 SLUD %	GE DISPOSAL FROM AND TO	GALLONS	LBS	EWATER	ED SLUDGE		ROM AND TO	MAN HRS		DALYLOG
EMOVED	SOLIDS	LOCATIONS	REMOVED	OUT	YDS.	sounds		LOCATIONS	DAY		
			1						16.0	1	AIRLIFTED # DIG. TO# 2/ WORKED ON CUMPUTER/ BETH
31736	10		!								SWITCHED INF. PUMPS NOW # 1
31/30	1.0	LEFFS FIELD # 7	1	2647.0							CLEANED DO - SS PROBE WITH VINEGER
31760	10	LEFFS FIELD # 7	1						16.0		
51100	1.0	LETTO FILLO #1	1	2649.0					16.0		RAS PUMP PLUGED / PUMPED SCUM BOX
			1						3.0		LIGSED OF ALETER
			i i								HOSED CLAIFIER
			ì								RASPUMP PLUGED / HOSED CLAIFIER BOB DILLARD / DMRS
15876	1.3	LEFFS FIELD # 7	i -	1721.0							3 BLOWERS ON
		and a second second second	i								SRT= 6.50
			ì								RAS PUMP PLUGED / PUMPED SCUM BOX
			i							1 13	
			Í								ADJUSTED AIR DIG. / HOSED CLAIFIER
			1								STEVE LEVAL 3 CLASS ON ZOOM 3 DAYS
			1					i			BEACH ON CLAIFIER PLUGED
			1					i			AIRLIFTED # 1 DIG. TO # 2
			1					i			CLEANED CAKE ROOM / MACHINE
			1					i			UNPLUGED 3 WATER PUMPS
			1					1		20	
	100		1	maine				1	3.0	21	DRAINED # 1 CLAIFIER/ RAIN WATER
31755	1.0	LEFFS FIELD #7	ļ	2648.0					16.0	22	RAS PUMP PLUGED / PUMPED SCUM BOX
24000			1								MOWED AT CIY PARK
31000	1.0	LEFFS FIELD # 7	!	2585.0							AIRLIFTED # 1 DIG. TO # 2
			1								SCRUBBED CLAIFIER
			1					-			RAS PUMP PLUGED / HOSED CLAIFIER
			1								RAS PUMP PLUGED / HOSED CLAIFIER
			l							28	
			;								RAS PUMP PLUGED / HOSED HEADWORKS
								i	16.0	31	HOESED M. L. CHANNEL / ADJUSTED AIR IN AB / M. L. CHANNE
142127	5.3		0.0	12250.0	0.0	0.0	I ALL DEWA	TERED SLUDG I	376.0		ADDITIONAL INFORMATION
31760	1.3		0.0	2649.0	0.0			MEASURED IN I	16.0	i 1	
15876	1.0		0,0	1721.0	0.0		YDS.	1	3.0	i i	
DIV/01	1.1		0.0	2450.0	0.0	0.0	į	i	12.5	1	
							1 				
							I) j			
							l	l			
31780	t.3		0.0	2649.0	0.0	0,0		 1	16.0		
15876	1.0		0.0	1721.0	0.0	0.0	ŕ	i	3.0		

I CERTIFY, UNDER PENALTY OF LAW, THAT THIS DOCUMENT AND ALL ATTACHMENTS WERE PREPARED UNDER MY DIRECTION OR SUPERVISION IN ACCORDANCED WITH A SYSTEM DESIGNED TO ASSURE THAT QUALIFIED PERSONNEL PROPERLY GATHER AND EVALUATE THE INFORMATION SUBMITTED. BASED UPON MY INQUIRY OF THE PERSON OR PERSONS WHO MANAGE THE SYSTEM, OS THOSE PERSONS DIRECTLY RESPONSIBLE FOR GATHERING THE INFORMATION, THE INFORMATION SUBMITTED IS, TO BEST OF MY KNOWLEDGE AND BELIFF, TIME, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES TO SUBMITTING FALSE INFORMATION, INCLUDING THE POSSIBILITY OF FINES AND IMPRISONMENT FOR NNOWING VOLATIONS. THE MONTHLY AVERAGE DIGESTER POWNES DRIVED BY THE MONTHLY TOTAL POWDS HAULED WHICH IS DIVIDED BY THE KUMBER OF DAYS OF THE MONTH. THIS GIVES A TAUE SRT. •

.

SIGNATURE:

WASTEWATER TREATMENT PLANT PROCESS CONTROL REPORT

ALKALI	ITY I	AMMA	AllA	MO	RATE		AEROBIC D	CEETED .											•						<u> </u>	•	·		
NF	EFF	INF MO/L	EFF MGA	INF MG/L	EFF	I MLSS	MLSS GALS	MLBS	РН	DO PPM	ТЕМР	VOLA 2 TILE 1	MLSS MG/L	AEROBIC DI MLSS	MLSS		DO		VOLA I	MLSS	AEROBIC DI MLSS	MLSS		DO		NOLA I	DAYS		VOL.
		•••••				· ····					ICMP		Murt.	GALS	LBS	PK	PPM	TEMP	TILE	MGA.	GALS	LBS	PH	PPM	TEMP	TILE	SRT	MCRT	REDUC
170	150	37	26			12000 	95123	9520	6.89	2.0	21.6	83 	9440	108283	8525	6.39	3.5	21.3	82 	10200	106890	9093	2.58	7.7	22.5	63	20	43.2	4
							109215	6294	5.58	3.0	21.8	B5	8570	108970	7789	3.07	3.2	22.7	84	10560	113853	10027	2.79	7.7	22.0	84 1	9	53.2	
	. !		1			858D	109215	7815	4.66		22.6	86	8510		7735	3.52		23.2	84 j	9870	89481	7366	2.91		22.5	83	5	39.7	
185	140	36.0	23.0			8640	109215 109216	7870 7369	4.55 5.03	2.3	23.4 23.3	87 j 85 j	9009 8540		5985 4042	3.64	6.1	23.2	B4	9000	87392	6500	3.74	7,4		83	9	44.B	
	1						105215	1999	3.93		23.3	1 405 1 1	9940	56753	4042	3.56		23.0	86 	9360	91570	7148	3.38		22.B	84	8	33.7	
	ł		i			B010	100604	6721	6,98	0.9	21.8	83	7820	85303	5563	6,92	1.6	22.9	1 1 CB	8550	97141	6927	2.86	6,1	22,9	ви	в	35,2	
						B21D B17D	32491	2225	7.60	~ ~	21.2	84	8060	81821	5500	7.07		22.2	83	6530	100623	5480	3.44		22.6	81 j	14	21.2	
180	150	35.0	22.0			6170			7.08	2,8	20.3	84	8170			7.02	2.1	21.5	84	8350			4.23	5.0	21,9	79]			4
	ľ					9570			6.86	2.3	20.7	85	7920			6.79	2.8	21.0	8⊐ j	9050			4.96	1.7	22.4	84			4
			¦			7990	35622	2374	6.73	2.2	19.B	84	7290	81125	4932	6.63	1.0	19.6	83	9200	120121	9217	7.14	0.9	21.4	83	-		
	i		i			B100	35822	2406	6.57		19.9	B3 [8040	76250	5113	6.66	1.0	20.5	84	8720	108283	7875	7.15	0.9	21.0	83	7	21.9 22.9	4
190	160	12.0	75.01			7200			6.40	2.0	20,1	86	8670			6.64	0.9	21,1	84 j	9030			7.25	1.1	21.3	B1			4
άÛ	160 	33.0	26.0 			7940	35622	2359	6.02		15.6	82 	7780	77643	503B	6,63		20.5	84	9310	95052	7380	7.26		20.8	82	6	22.2	4
	t					6960			4.27	3.6	19.6	84	8280			6,91	0.8	20.6	84	8640			7.26	1.0	20.6	84]			5
	ł					15720			4.25	3.6	19,4	92	9130			7.05	0.5	20.5	64 j	8250			7.14	6.7	20.6	83			
180	150 	29.0	25.0 j		i	6860	35622	2038	4.21		19.4	84	9230	86596	6674	7.06		21.0	85		108979	B107	7,18	0.7	20.1	83	7	33.4	4
905	750	170.0	122.0	0.00			807566	56991	93.60	24.7	330,5	1357		951555	66896	B4.66	22.5	344.7	1340		1118385	85120	81.27	39.3	348.3	1304	104	371.4	71
190 170	160 j 140 1	37,0 29,0	26.0 22.0	0.00 0.00			109215 32491	9520 2038	7.60 4.21	3.6 D.9	23.4 15.6	92 82	9440	108979	8625	7.07	6.1	23.2	85		120121	10027	7,26	7.7	22.9	B4	20	53.2	ő
180	150	33.0	24.0	0.00			70863	5779	5.91	2.3	19.5	87	729D 8365	56753 82866	4042 6081	3.07 6,91	0,5 2,3	19.6 21.5	82 64	6530 8971	87392 101762	5480 7738	2.58 5.08	0.7 3.9	20.1 21.8	63 82	6 ERR	21.2 33.8	4
										******						200								****					

													***********								*****					****			·
190	160	37.0	26.0	ERR	ERR	15720	109215	9520	7.60	3.6	23.4	92	9440	108979	8525	7.07	6.1	23.2	1 28	10550	120121	10027	7.25	7.7	22.9	84 I	20	53.2	54 I
170	140	29.0	22.0 1	ERR	ERR	6860	32491	2038	4,21	0.9	15.6	82	7290	56753	4042	3.07	0.5	19.6	62	6530	87392	5480	2.58	0.7	20.1	63	6	21.2	40

RECEIVING STREAM COQUILLE RIVER										
			NERCIEAL	SUIDCE	EWATERED			GE DISPOSAL	DUID SLUDO	i
(MAN HRS DAILY LOG PER HEGARDING BREAKDOWN BYPASSING			FROM AND TO	%	CU	LBS	GALLONS		*	GALS
PER J [HEGARDING BREAKDOWN, BYPASSING, DAY] DAY [ODDRS, COMPLAINTS, ETC	I DAY		LOCATIONS	SOLIDS	YOS	OUT	REMOVED	LOCATIONS	SOLIDS	REMOVED
· · · · · · · · · · · · · · · · · · ·						4999.7		LEFFS FIELQ 6	1.0	15982
16.0 1 1 SCRUBBED CLARIFIER, HD6ED MIX, LID. 3.0 1 2 I HOLLIDAY						1333.0		LEFPS HELU 6	1.0	10002
16.0 3 HOSED HEAD WORKS, HOSED CLARIFIER							i			
3.0 4 HOSED CLARIFER, CLEAN SCREEN ON CLARIFIER, RAN COMPA							i			
3.0 5 RAS PUMP PLUGGED, HDSED CLARIFIER, HOSED HEAD WORKS							i			
16.0 6 CLEANED 3 WATER FILTERS, HOSED MIX LIQ. CHANNEL						2637.0	i	LEFFS FIELD #6	1.0	31616
[16.0 7 JAR TEST DIG. #1. AIR LIFT 2-3 DIG.						2646.0	i	LEFFS FIELO #6	1.0	31727
16.0 8 AIR LIFT DIG # 2-3. HOSED MIQ. LIQ. CHANNEL						2383.0	i	LEFFS FIELD #6	0.9	31743
16.0 [9 PULLED WASTING VALVE APART, AIR LIFT 1-2 ANS 2-3 OIG.						2378.0	i	LEFFS FIELD#4	0.9	31682
16.0 10 HOGED HEAD WORKS, CLEAN SCREEN CLARIFIER.							i	i		
3.0 11 REMOVE RAGS FROM HEAD WORKS, SEWER BLOCKAGE.							i			
3.0 12 SWITCH INF. PUMPS TO #2. UNPLUG 3 WATER PUMPS.							j	j		
15.0 13 AIR LIFT 1-2 AND 2-3, BACK FLUSH INF, PUMP # 1.						2390.0	l l	LEFFS FIELD #4	0.9	31842
15.0 14 COMSPAN WORK ON PHONES, HOSEO CLARIFIER.						928.0	Í	LEFFS FIELO #4	0.7	15890
16.0 15 SCRUBBED CLARIFIER, HOSED HEAD WORKS, MIX LIQ, CHANNE							i i	i		
16.0 16 UV CHANNEL CLEANING NEW SLEEVES A		16.D	i					i		
16.0 17 HOSEO MIX LIQ CHANNEL, HIMMELRICK CLEAN ALL WET WELLS			i					Í		
3.0 18 PUMP SCUM BOX, AB PROBE CLEANED, HDSED CLARIFIER.		3.0	i				1	i		
3.0 19 CLEANED 3 WATER PUMP DRAINS, HOSED MIX LIQ. CHANNEL.		3.0	i					1		
16.0 20 AIR LIFT DIG #2 INTO #3, INCREASED WASTING.			i			2378.0	1	LEFFS FIELD # 3 1	0.9	31682
18.0 21 AIR LIFT DIG #2 INTO #3, SWITCH INF. PUMPS TO # 1.		16.0	i			2364.0	1	LEFFS FIELD # 3	0.9	31755
16.0 22 HOSED MIX LIQ CHANNEL, SCRUBBED CLARIFIER, RAN COMPAC		16.0	i					1		
16.0 23 ORDERED NEW VFO BLOWER, HOSEO HEAD WORKS,		16.0	i			2383.0		LEFFS FIELD # 3	0.9	31754
16.0 1 24 HOSED MIX LIQ. CHANNEL, TODK APART RAS REMOVE RAGS.		16.0	i					1		
3.0 1 25 HOSED MIX LIQ, CHANNEL, HOSED HEAD WORKS.		3.0						1		
3.0 26 AIR LIFT DIG. #2 INTO #3. RAN COMPACTOR, HOSED CLARIFIER.		3.0	i					1		
16.0 27 HOSED HEAD WORKS, HOSED MIX LIQ CHANNEL.		16.0	i							
16.0 28 HOSED HEAD WORKS, GREESES MOVING PARTS IN PLANT.		16.0	i					1		
16.0 29 RAS PUMP PLUGED / HOSED CLAIFIER		16.0	i					1		
16.0 30 RAS PUMP PLUGED / HOSED M. L. CHANNEL / CLAIFIER		16.0	i			2385.0		LEFFS FIELD # 3	0.9	31768
16.0 31 SCRUB CLARIFIER, HOSED HEAD WORKS, MIX. Lto.		16.0	i					1		
		379.0	ALL DEWATERED SLUDGI	0.0 1	0,0	24205.0	0.0	··	10.0	317441
			CAKE AND MEASURED IN		0.0	2645.0	0.0	i	1.0	31842
3.0 1			YDS.		0.0	928.0	0.0	i	0.7	15850
12.2	ł			0.0	0.0	2200.5	0.0	i	0.9	ERR
	i		i	——— i					•••	*********
	!	ļ		1						
	ļ		· · · ·	ļ						
	l	1								
16.0		16.0		ERR 1	ERR	2646.0	ERR	i	1.0	31842
3.0		3.0	1	ERR 1	ERR	928.0	ERR	1	0.7	15890

.

.

.....

1

.

- ---

.

I CERTIFY, UNDER PENALTY OF LAW, THAT THIS DOCUMENT AND ALL ATTACHMENT'S WERE PREPARED UNDER MY DIRECTION OR SUPERVISION IN ACCORDANCED WITH A SYSTEM DESIGNED TO ASSURE THAT QUALIFIED PERSONNEL PROPERLY Q'ATHER AND EVALUATE THE INFORMATION SUBMITTED. BASED UPON MY INQUIRY OF THE PERSON OR PERSONS WHO MANAGE THE SYSTEM, OR THOSE PERSONS DIRECTLY RESPONSIBLE FOR GATHERING THE INFORMATION, THE INFORMATION SUBMITTED IS, TO BEST OF MY KNOWLEDGE AND BELIEF, THE, ACCURATE, AND COMPLETE, I. AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES TO SUBMITTING FALSE INFORMATION, INCLUDING THE POSSIBILITY OF FINES AND IMPRISONMENT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGESTEM SONIAD SIVIDED BY THE MONTHLY TOTAL POUNDS HAULED WHICH IS DIVIDED BY THE NUMBER OF DAYS OF THE MONTH. THIS GIVES A TRUE SRT.

SIGNATURE:

	vor.	42 F	42	<u>-</u>	-4	-	44 44		44 45 42	40		1 22 23 1		1
	MCR1 RED	15.2 29.5			38.7		27.6	e 17	20.2		23.5	226.9 38.7 20.2 20.2		
	DAYS SRT NO	r- u			۵		e 1	~	~ ∞		ų	88 a H		
	- 28 ·		84		82	118	2223		83	- 1 58			 , 	 1
\sim	- 04 TEMP	22.7	22.6	22.4	21.1	21.1	21.9 22.6 22.6	2	25.9 25.5 26.0	19.8	20.2	262.9 1 28.0 19.6 22.7		
00		5 6 5		56	2.5	9.4	21 21 21 21		1.6	0.8	1.6	21.3 36 5.2 36 0.3 1 1.8 2 1.8 2		
å	8 7d 1	7.20 5.84 5.05	4.35	4.22	5.8D	6.41	5.83 3.85 3.85		4.59 4.29 6.51	70.7	7.05	87.19 2 7.20 3.85 5.45		
<u></u>		6797 4565			6344		5870		5774		6341	50216 81 7273 1 4565 1		
40050	AEROBIC DACESTER 3 MLSS MLSS GALS LBS	100523 69267			108978		108283		111784		92267 6	805673 50 113853 7 69287 A 69287 A		
57	AER MGA G	8100 10 7900 6	7320	5960	6980 101	5980	5816 6500 55500 7660 10		7780 111 6880 100 9390	9800	8240 92	118060 B03 9900 113 5500 69 7379 100		
ž			1 ss -			87 5	4 22 EF C2 # 22 C		86		82 81			
	* 20 분											1374 67 85 85		
ž -	TEUP	22.7	22.0	24.1	20.5	21.0	22.0 20.5 22.6	İ	22.8 22.8 23.5	19.8	20'0	360.7 28.7 28.7 28.8 21.9		
	84	0.6 0.6	Υ. Γ	4.6	2.8	9.4	0.5 7.4		2.0 0.2	n, 6	1.5	21.9 21.9 1.5 1.5 1.5	ļ	
Clease con	뷴	7.27 7.07 6.88	5.75	4.55	5,41	16.7	7.21 7.31 7.00 7.41		7.59 7.68 7.48	7.47	7.46	110.92 7.68 4.55 6.93	220	
	GESTER 2 MLSS LBS	8715 6508			4134		8202 7845		8270 9246		5638	56560 9246 4134 7070		
	A EROBIC DIGESTER 2 MLSS MLSS GALS LBS	88785 94052			81125		83910 71376		76250		81813	619058 94052 51878 73465		
INVECTIVATION INCLUSES CONTINUES OF	NLSS MLSS	9070 8210 7840	1070	6280	6110	8910	10160 11720 12520 13180		14030 14540 14150	14060	13030	170880 14540 6110 10325		
¥ .	* 3 =	883										142	•	
	TEMP	21.3 20.9 21.0	20.6	19.6								103.4 21.3 19.6 20.5		
	00 Wed	3.5 3.2	4.1	6.7								17.5 8.7 8.0 8.0		
	H	4.05 3.92 6.68	3.44	3,10								21,19 8.68 3.10 4.89		
	GESTER 1 MLSS LBS	1815 1800										3615 1815 1800 1808		
	AEROBIC DIGESTER 1 MLSS MLSS GALS LBS	35622			1957							73201 35622 1957 18790		
******	MCA.	6110 6060 6540	5540	5150								29500 6540 5150 5845		
	EFF NGA					·					:	0.00		
	NTRATE WE NON										Ì	00'0 00'0 00'0		
	413 HUG HUG				26.0		28.0		27.0		' 	26.0 26.0 27.0		
	AMMONIA INF E LIGA, MO	0.85			54.0		16.D		41,D			169.0 184.0 36.0 45.0		
					160		14 14	**	160		 	- 186		
	ALCALINTY INS EF	085			200		130		190		ĺ	966 B		046

,

• •

ĺ

L	OUID SLUD	GE DISPOSAL	1	0	EWATERE	D SLUDGE D	SPOSAL	MAN HRS		DALLY LOG
GALS	SOLIDS	FROM AND TO LOCATIONS	GALLONS REMOVED	LBS	CU. YDS	% SOLIDS	FROM AND TO LOCATIONS	PER	DAY	REGARDING BREAKDOWN, BYPASSING,
			1					3.0	1 1	HOSED CLARIFIER, MIX LIQ, RAN COMPACTOR
31779	0.8	LEFFS FIELD # 2	U				1	3.0		CLEANED AB PROBE, HOSED HEAD WORKS
31664	0.8	LEFFS FIELD # 2	51 C	2120.0				16.0	3]	HOSED MIX LIQ, CHANNEL, TURN 3RD BLOWER ON.
21004	0.0	GEFFO FIELD # 2		2113.0			ļ	16.D		AIR LIFT DIG #2 INTO #3, CLEANED DO/SS PROBE.
								16.0		PULLED JETTY #2 PUMP REMOVED GLOG.
								8.G		HOSED MIX LIQ CHANNEL, HOSED CLARIFIER.
			1					8.0		HOSED HEAD WORKS, ADJUST AIR MIX LIQ CHANNEL
								3.0		HOSED CLARIFIER, HOSEO HEAD WORKS.
								16.0		HOSED MIX LIQ CHANNEL, HOSED CLARIFIER.
								16.0		SET UP FOR DIG.#1 CLEAN OUT. HJOSED CLARIFIER.
31765	0.7	LEFFS FIELD#2	i	1854.0				16.0	12	SWITCH FROM CLARIFIER #2 INTO # 1. ADD OIL VFD BLOWER. UNWIRE RAS PUMP #2 AND REMOVED.RESET TOTALIZER.
		and a subsected	i					16.0		HIMMELRICK CLEANED DIG. #1. PRESSURE WASH RAS ROOM
		1	ì					16.0		AIRLIFT DIG #2 INTO #3.
			ì				i	3.0		COMPACTER TRIPPED OK
							i	3.0		PUMPED SCUM BOX
		and the local sectors in	1				i	16.0		CHANGED SOLIDS FROM 3000MGL TD 2500
31829	0.7	LEFFS FIELD # 1	[1858.0			i	15.D		HOSEO CLAIFIER / HEADWORKS
			0				i	16.0		AIRLIFTED # 2 DIG. TO # 3
31674	0.8	LEFFS FIELO # 1	n	2113.0			1	16.0		REMOVED RAS PUMP / READY FOR NEW ONE
		the second se					1	16.0		SCRUBBEO CLAIFIER
							i	3.0	22 1	
-	1.1.1						i	3.0	23 1	UNPLUGED 3 WATER PUMPS
31757	0.8	LEFFS FIELD # 1		2119.0			1	16.0		SWITCHEO INF. PUMPS
31809	0.7	LEFFS FIELO # 1		1857.0			1	16.0	25	PLUMER CHECKED BACKFLOW DEVICES
							1	16.0	26	RAS PUMP PLUGED / NO WASTING
							1	16.0	27	BOB DILLARD ON SITE FOR RAS PUMP
							1	16.0	28	RAS PUMP PLUGED / NO WASTING
		G					1	3.0 1	29	
31655		LEFFS FIELD # 1					1	3.0 1		HOSED CLAIFIER / HEADWORKS
31055	0.8	LEFFSFIELD#1		2112.0			I	16.0	31 1	HOSEO M. L. CHANNEL
253932 31829	6.1			16146.0	0.0		ALL DEWATERED SLUDG	350.0 (i	ADDITIONAL INFORMATION
31655	0.8		0.0	2120.0	0.0		CAKE AND MEASURED IN	16.0	1	
ERR	0.7		0.0	1854.0	0.0		YDS. I	3.0	1	
ERA	0.8		0.0	2018.3	0.0	0.0 [11.3		
						i	. i	1	1	
						1				
							ł			
31829	0.8		ERR	2120.0	ERR	ERR	1	16.0		

I CERTIFY, UNDER PENALTY OF LAW, THAT THIS DOCUMENT AND ALL ATTACHMENTS WERE PREPARED UNDER MY DIRECTION OR SUPERVISION IN ACCORDING YEDRITH & SYSTEM DESIGNED TO ASSURE THAT QUALIFIED SUBMITTED. BASED UPON MY INDURY DO THE PTIEMPORTATION WHO MANAGE THE SYSTEM, OR THOSE PERSONS DIRECTLY RESPONSIBLE FOR GATHERING THE INFORMATION, THE INFORMATION SUBMITTED IS TO BEST OF MY KNOWLEDGE AND BELIEF, TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES TO SUBMITTED IS TO BEST OF MY KNOWLEDGE AND BELIEF, TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES TO SUBMITTED IS ALSE INFORMATION, INCLUDING THE POSSIBILITY OF FINES AND IMPRISONMENT FOR KNOWLEDGE. SIGNIFICANT PENALTIES TO GLESTER REST IS BASED ON THE MONTHLY AVERAGE TOTAL DIGESTER REST IS BASED ON THE MONTHLY AVERAGE TOTAL DIGESTER POUNDS DIVIDED BY THE MONTHLY TOTAL POUNDS HAULED WHICH IS DIVIDED BY THE NUMBER OF DAYS OF THE MONTH. THIS GIVES A TRUE SRT.

SIGNATURE;

			42 42 7		49 40 40 40 40 40 40 40 40				- 49 - 44
ł	NCRT REDUC	18.2		26.3	17.8 12.6	11.2	1164 2914 2914 2914 1912		29.4 11.2
l		2		10 T	49		24 24 24 1		φn
1	,				831		I i		 · = =
- O	VOL N	I				828	1122 88 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80		B 8
2090		24.5	23.5	201 201 201 201 201 201 201 201 201 201	22.0 19.7 20.7 22.9	21.2 21.7 21.8	352.0 24.3 19.7 22.0		24.5
\mathcal{T}_{i}	82		0.7	1 2 2	0.4 0.3	0.7 0.5	812.25		2.3
1	i.	6.20 18.1 7.09	6.35 7.61	7.28 7.91 7.19 7.19	0,48 0.26 5.80 7.29	7.41 7.47 7.44	107.19 7.95 3.97 6.70		7.9A 1.97
	AFROBIC DICESTER 3 MLES NALES GALE LIDS	4418		10470 7423	6629 5335	6149	40424 10470 4418 6737		10470 4418
1	AEROBIC MLES GAL5	69981		40737 85899	108283 95052	103408	503462 108283 40737 83910		105283
estent	MLSS MCN,	01501 0797	10580 10640	10530 10100 10220 7880	7340 6730 7380 8640	6650 7130 8160	135820 10910 6840 8469		10910 6640
Ž	×ğ≝	183		199 199 199			88 82 88 9		88 83
00		21.2 20.1 21.5	22.4	21.1 22.5 22.9			169.2 22.9 17.9 21.2		22.9
COL HEPOR	88	0.1	3 3	0.5 1.1			55 5 5 S		01.0
ESS CONTR	Ĕ	6.86 7.01 7.18	7.45 6.82	7.05 7.05 6.87			56.18 7.45 6.82 7.07	£	7.45 6.82
LANT PROC	ESTER 2 MLSS LBS	7689		2783 2937			13409 7689 2753 4470		7685 2783
EATMENT P	AEROBIC DIGESTER 2 I MLSS MLSS GMLS LDS	67198		40737 39344			147279 67198 38344 53271		67198 39344
WATEWATER TREATMENT PLANT PROCESS CONTROL HEROAT	AE MLSS MCAL	13530 13720 13840	13950	\$0030 8190 8950			86270 1 13850 8190 11070		13950 8190
WASTEW	,								ERR
-	TEUP T						0.0 0.0		ERR
	00 Midd						0.0		ERR
	H						000		ERR
						1			ERR Fra
	AEROBIC DIGESTER 1 ML39 ML55 CALS LB5						a		ERR E
	AERI NGA G								ERR
ļ						 ;;		 -	
	MITRATE F EFF A. MCM					l	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		A ERR
1	포토로						8888	*****	ERA Era
E.	DNIA EFF MGA	26.0	26.0	22.0	22.0		24.0		220
	AMMONIA RE E	34.6	44,D	\$2,0	30.0		150.0 44.0 30.0 37.0		30,0
· . ·	2	160	160	1601		:	1 480 1 22 1 22 1 22 1 22 1 22 1 22 1 22 1	•	180 (160
. 	ALKALINTY INF EF	190	180	220	0HZ		220 220 200		220 180
	⇒ 1								

•										RECEIVING STREAM CODURLE RIVER
	QUIO SLUO % SOLIDS	ICE DISPOSAL FROM AND TO LOCATIONS	I GALLONS	LBS	DEWATERS CU. YDS.	ED SLUDGE I % SOLIDS	DISPOSAL FROM AND TO LOCATIONS	I MAN HRS I PER	i	DAILY LOG REGARDING BREAKDOWN, BYPASSING,
31764		LEFFS FIELD # 1		2119.0		50005		16.0 16.0 16.0 3.0 3.0 3.0 3.0 8.0	2 3 4 5 6 7 8 1 8 1 10	INSTALLED NEW GLOWER 5910 FRESSE ELECT. RAS PUMP I SCRUB CLARIFIER, TIGH PACK GLAND GRIT PUMP. CLEAND CIPES DIGHT, REPLACE OLFUSERS DIG #1, HOSED HEAD WORKS, MIX, LQ, HOSED MIX LQ CHANNEL, HOSED CLAROIFIER. HOSED MIX UQ CHANNEL, HOSED CLAROIFIER. HOSED MIX UQ CHANNEL, HOSED EFF CHANNEL, HOSE CLARIFIER AR LIFT DIG #2 INTO #3. HOSED EFF CHANNEL, HOSE CLARIFIER CLEANED FAKE ARM CLARIFIER #2 START UP ON NEW FASS GRINDER PUMP,
31860 31819		LEFF& FIELD # 1 LEFF& FIELD #1		26 5 9.0 2554.0				8.0 3.0 8.0 8.0 8.0 8.0	12 13 14 15	TRANSFER TO CLARIFIER #2. DRAIN CLARIFIER #1 PUMP SCUM BOX, HOSEO CLARIFIER, FULUSH CLARIFIER #1 HOSEO EFF CHANNEL, HOSEO MIX, LIO. AB PROBE CLARIE, HOSEO MIX, LIO. RAN COMPACTOR, BLOCKAGE AT JETTY AND HERRITAGE LINE.
31757		LEFFS FIELD #1		1854.0				8.0 6.0 3.0 3.D	17 18 1 19 1 20 1	PUMPED SCUM BOX / UNPLUGED BEACH
31769		LEFFS FIELD #5		1854.0				16.0 16.0 16.0 16.0 16.0 16.0 3.0 3.0	22 21 24 25 26	DRAINED # 2 AB / HOSED CLAIFIER HOSED CLAIFIER RAS PUMP CHECK OK SCRUBBED CLAIFIER HOSED HEADWORKS HOSED CLAIFIER LOOKS GOOD
31746	0.7	LEFFS FIELD # 5		1853.0				16.0 16.0 16.0	29	SHIPED 75 HP MOTOR TO HPS MEET WITH CITY MANEGER ON NEW RAS PUMP
190726 31880 31746 ERR	4,9 1.0 0.7 0.8		0.0 0.0 0.0 0.0	12993.0 2659.0 1853.0 2165.5	0.0 0.0 0.0 0.0	0.0	ALL DEWATERED SLUDG CAKE AND MEASURED IN YDS.	299,0 18.0 3.0 10.0	 	ADDITIONAL INFORMATION
						i				
31880 31746	1.0 0.7	1	ERR ERR	2659.0 1853.0	ERR ERR	ERR ERR	1	16.0 3.0		

-

.....

1

.

.....

I CERTIFY, UNDER PEMALTY OF LAW, THAT THIS DOCUMENT AND ALL ATTACHMENTS WERE PREPARED UNDER MY DIRECTION OR SUPERVISION IN ACCORDANCED WITH A SYSTEM DESIGNED TO ASSURE THAT QUALIFED PERSONNEL PROPERLY CATTERE AND EVALUATE THE INFORMATION BUBMITTED. BASED UPON MY INQUIRY OF THE PRESON OR PERSONS WHO MANAGE THE SYSTEM, OR THOSP PERSONS DIRECTLY RESPONSIBLE FOR GATHERING THE INFORMATION, THE PROFMATION SUBMITTED IS, TO BEST OF MY KNOWLEDGE AND BELLEF, TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE BIGNIFICANT FEMAL THES TO SUBMITTING FALSE WFORMATION, INCLUDION OTHE POSSIBILITY OF FINES AND IMPRISONMENT FOR KNOWING VIOLATIONS. THE MOUNTLY AVERAGE DOWNETTED IS, BASED ON THE WOLDS HAULD WHICH IS DAVIDED BY THE NUMBER OF DAYS OF THE MONTH. THIS GIVES A THUE BRT.

SIGNATURE:

ALKAUN	······																							9		* *			
INF	EFF	INF MGA,	EFF MG/L	NITR/ INF MCAL	EFF MGAL	MLSS NG/L	AEROBIC D ML88 GALS	GESTER 1 MLSS LDS	РН	DC PPM	TEMP	VOLA TILE	MLSS MOAL	AERODIC O MLSS GALB	IGESTER 2 MLSS LBS	Рн	DO PPM	TEMP	NGLA TILE	MLSS MG4L	AEROBIC D MLS9 GALS	IGESTER 3 MLSS LDS	PH	DO PPM	TEMP	NGLA TR.E	DAYS SRT	MCRT	VOL REDUC
180	160	38.0	29.0					·····											_	7280	103408	6276	7.22	0.8	21.3	84	7	11.9	
	İ		į		i	4450			7.54	1.0	18.3	89								7250			4.58	6.3	20.3	83			
190						7190			7.38	0.7	18.9	89								6520			4.34	4.9	20.4	83			
199	160 	37.0	24.0			8470			7.38	0.7	19.2	. 86								6690			4.14	4.4	20.2	65			4
					ļ	7369			7.13	1.8	19.6	 								5920			4.58	4.8	20.7	81			
200	150 j	47,0	26.0 I			8510			6.95	0.6	19.8	65 1								5660			4.05	4.6	20.6	80 1			
			ļ			7100			6.52	0.6	20,2	86 j								6460			3.60	4.7	20.1	86 (
200	150	41.0	24.0		1	7620			7.07	0.5	19.8	85	6440			6.63	1.1	19.3	85	6000			3.75	5.4	20.7	85			
100	130	41.0	24.01			8800			6,32	1.5	17.1	86	6890			7.13	1.0	18.5	B3	4820			3,17	3.6	19,3	B4			
						7230			4,08	4.3	16.4	85							į	3750			2.93	6.3	18.0	85			
200	140	34,0	21.0			7250			5,06	2.4	17.3	87 1	8600			5.94	1,5	17.7	85	4710			2.71	5.9	17.1	84			:
200	1401	34.0	21.0			7740			7.15	9.8	19.4	85	8090			6.36	1.1	19.1	84	4570			2,74	5.9	18.7	87			;
970 200	760 160	197.0 47.0	124.0 29.0	0.00) 00.0	79720	0	0	73.38	14.9	206.0	947	30020	ą	0	27.06	4.7	74.6	337	69630	103408	6276	47.71	57.6	237.A	1007	7	11.9	3
180	140	34.0	21.0 25.0	0.00 0.00 0.00	1 00.0 00.0 00.0	8600 4450 6625	0	ŏ	7.54 4.88 5.21	4.3 0,5 2,4	20.2 16,4 18,3	68 85	8600 6440	0	8 0 0	7,13 6,38 6,77	1,5 1,0 1,2	19.3 17.7 18,7	85 (83)	7280 3750 5803	103408 103408 103408	6276 6276	7.22 2.71 3.98	6,3 0,8 4,8	21_3 17.1 19.8	87 80 84	7 ERR	11.9 11.9 11.9	

· · ·

.

.

200 160 | 47.0 28.0 | ERR ERR | 8800 ERR ERR 7.54 4.3 20.2 88 | 8500 ERR ERR 7.13 1.5 19.3 85 | 7280 103408 6276 7.22 6.3 21.3 87 | 7 11.9 45 | 180 140 | 34.0 21.0 | ERR ERR | 4450 ERR ERR 4.58 0.5 16.4 85 | 6440 ERR ERR 6.36 1.0 17.7 63 | 3750 103408 6276 2.71 0.8 17.1 60 | 7 11.9 16 |

										RECEIVING STREAM COOLULLE RIVER R.M. 11
L	OUID SLUDG	E DISPOSAL	1		DEWATERED	SLUDGE D	ISPOSAL	MAN HRS		DALY LOG
gals Moved	% SOLIDS	FROM AND TO LOCATIONS	I GALLONS	LBS	CU. YDS	% SOUD\$	FROM AND TO LOCATIONS	PER DAY		REGARDING BREAKDOWN, BYPASSING, ODDRS, COMPLANTS, ETC
								16.0		PUMPED SCUM BOX / CLEANED UV CHANNEL A
15926	0.7	LEEFS FIELD # 5	!	930.0				16.0 3.0		TURNED # 3 BLOWER ON
			1					3.0		HOSED CLAIFIER
			í					16.0		PUMPED SCUM BOX
			1					1 16.0		CLEANED ALL UV'S AND CHANNELS
			1					18.0		RECALIBRATED AB PRBE
			1					16.0		WORKED ON CAKE MACHINE
			!					16.0		PUMPEG SCUM BOX
								3.0		
								3.0 3.0		LOWERED FIRST 2 CELLS IN AB HOLIDAY
			i					16.D I		PUMPED SCUM BOX
			i					16.0		PLANT SIGHTLY UP SET
								16.0		CLEANED AIR PIPES DIG. # 2
			1					18.0	16	TAG CALIB. FLOW METER / SCRUBBED CLAIFIER
			t i i i i i i i i i i i i i i i i i i i					i 3.0 l		
								3,0		PUMPED SCUM BOX
								16.0		ADJUSTED AB PROBE
								16.0 16.0		DEPT. HEAD MEETTING CITY HALL SCRUBBED PART OF CLAIFIER / INSTALLED WATER END OF AR
								16.0 16.0		JAR TEST @ 2 DIG. / WORKED ON PIONNER PUMP
								16.0		HOSED HEADWORKS / M. L. CHANNEL
								3.0		
		i	i					3.0	25	# 2 DIG. OFF FOR DECANT
		1						16.0	26	ADJUSTED AIR AB / M. L. CHANNEL
		1						16.0		DECANTED # 2 DIG. / PUMPED SCUM BOX
		I						16.0		SCRUBED CLAIFIER
								16.0		PUMPED SCUM BOX
								16.0 3.0		FIXED OIL LEAK ON BLOWER # 5810
15925	0.7		0.0	930.0	0.0		ALL DEWATERED SLUDG			ADDITIONAL INFORMATION
15926	0.7	I	0.0	930,0	0.0		CAKE AND MEASURED IN		i i	
15926 ERR	0.7 0.7	ļ	0.0	930.0 930.0	0.0 0.0		YDS.	3.0		
EKK	0.7	1	0.0	930,0	0.0	0.0]		11.0		
						1	1		ł	
						1	•	i i	i	
						i			į	
15926	0.7		ERR	930.0	ERR	ERR		15.0	— ·	
15926	0.7		ERR	930.0	ERR	ERR		3.0		

.

. . . .

.

- -

....

- -

I CERTIFY, UNDER PENALTY OF LAW, THAT THIS DOCUMENT AND ALL ATTACHMENTS WERE PREPARED UNDER MY OIRCCTION O'R SUPERVISION IN ACCORDANCED WITH A SYSTEM DESIGNED TO ASSURE THAT QUALIFED PERSONNEL PROPERLY CATHER AND EVALUATE THE WIFORMATION SUBMITTED. BASED UPON MY INQUIRY OF THE PERSON OR PERSONS WHO MANAGE THE SYSTEM, O'R THOSE PERSONS DIRECTLY REFORMS EFFOR GATHERING THE INFORMATION, THE INFORMATION SUBMITTED IS, TO BEST OF MY NOMULEDGE AND BELIF, TIRU, EACOURATE, AND DOMENT WARMARE THAT THERE ARE SIGNIFICANT PENALTIES TO SUBMITTING FALSE INFORMATION, INCLUDIOR THE POSSIBLET, TRUE, AND MEMORY FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNIFICANT FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNART FOR KNOWING VIOLATIONS. THE MONTHLY AVERAGE DIGEST EF SIGNART FOR KNOWING VIOLATIONS AND BEST FOR THE MUMBER OF DAYS OF THE MONTHLY AVERAGE TO SUBSIFICANT FOR KNOWING VIOLATIONS AVERAGE FOR THE MONTHLY TO THE AVERAGE TO SUBSON FOR THE NUMBER OF DAYS OF THE MONTHLY AVERAGE AT AVER SRT.

.

.

.

4 1 / ela me SIGNATURE:

Site locatio	on and numb	er: Leff	-s. Field	1#	-1			1	Jan
		Digeste	er Totalizer	Multiply	Gallons	Pounds			
Date	Setting #	Start	Stop	by 100	Out	Out	Loads	Operator	Comments
8-18-20	1-2	0	31828		31849	1858	8	SH	
8-20-20	3-4	0	31674		31624	2113	8	SH	
8-24-20	5-6	0	31757		31757	2.119	8	SH	
8-25-20	2-8	0	31807		31809	1857	8	561	
831-20	8.10	0	21635		31.655	2112	8	SH	
9-3-20	11-12	Ð	31764		31764	2118	8	sit	2851 gold go
9-15-20	13-14	0	31880		31880	2659	8	BR	2851
9-16-20	15-16	0	31819		31859	2654	8	BR	
2-21-20	17-18	0	31757		31757			55	

CIT. JF E. DOI. WAS WATEN TRENT PLANT

ON SITE BIO-SOLIDS APPLICATION LOG " OStridg-C

E5, 20 5015

Site location and number: DAveleff's Field #2

L ____

		Digeste	er Totalizer	Multiply	Gallons	Pounds			
Date	Setting #	Start	Stop	by 100	Out	Out	Loads	Operator	Comments
3-3-20	1-2	0	31778		31,779	2128	8	SH	sta
2-4-20	1-2 3-4 5-6	0	31.604		34,009		8	stf	1
8-12-20	5-6	0	31765		31,765	125-4	8	8R	Fixenbel
					-				

1 and number: Setting # Setting # Seting # Setting # Setting # Setting # Setting # Setting # Setting #	C Z, E, E, E, 21 (9) 31, 75 P 31, 75 P 31, 75 P 31, 75 P	Multiply Gallons Pounds Multiply Gallons Pounds by 100 Out Out by 100 Out Out 11/24 2372 8 21/75 2387 8 21/75 2385 8	W Gallons Pounds Out Out 31/24 2389 31/55 2389	Pounds Out 2378	& Foads	De Vol	Commente
Setting # Settin	37 J		Gallons Out 31/2%	Pounds Out 2378		Operator ST	Commente
Setting # Setting # 3-4	stop 31282 31755 31758 31768		11/24	2389 Dut 2388		Operator ST	Commente
7-8 -6 -4	31642 31755 31758 31768		31,232	2389 2389		SH IS	
3-8	31755 31,755 31,768		11855 .	2389		-11	540 it
2-8	31.75 F		1754		do	24	
	87118		1	2833	00	SK	X
			129212	2,295	S	ST	S P29, 121 12901
							-

	T	Digest	er Totalizer	Multiply	Gallons	Pounds			
Date	Setting #	Start	Stop	by 100	Out	Out	Loads	Operator	Commen
7-9-20	1-2	0	31682		31,682	2378	8	SH	start
7-13-70	3-4	0	31842		3181/2	7390	8	stl	
7-14-20		0	15,880		15,850	528	4	SH	Finished
								1	
				-	-			1	

ite locatio	n and numb	ber: <u>heffs</u>	Fielda	Ħ5			De	19, 13	z sak
		Digeste	er Totalizer	Multiply by 100	Gallons Out	Pounds Out			
Date	Setting #	Start	Stop				Loads	Operator	Comments
?-72-he	1-2	0	30760		31760	1854	8	SH	
8-22-20 8-29-20 10-2-20	3-4	Ø	31746		31742	1853	8	SH	
10-2-20	5	0	15,826		15826	870	4	514	
									······
									and the second second second second
									· ·

L

		Digeste	er Totalizer	Multiply	Gallons	Pounds		1	
Date	Setting #	Start	Stop	by 100	Out	Out	Loads	Operator	Comment
7-1-20	1	0	15,982		15,982	-1333	4	SH/	estert
7-6-20	2-3	0	31616		3/6/6	26.37	8	SA	
7-7-20	4-5	0	3(727		31722	2646	8	5.11	
7-3-20	6-7	0	31,743		31743	2383	8	BR	Finished GAIS
							•		

CITY OF BANDON - WASTEWATER TREATMENT PLANT

ON SITE BIO-SOLIDS APPLICATION LOG

2020 Stant

Site location and number: Left Field #7

7

		Digeste	r Totalizer	Multiply	Gallons	Pounds	-		
Date	Setting #	Start	Stop	by 100	Out	Out	Loads	Operator	Comments
6-2-20	1-2	0	31,736		31,736	2647	8	503.1	·
6-4-20		0	31760		31760	2648	8	5:14.11	
(-S-20 5-22-20	5	0	15,876		15,876	1721	4	SH	
6-22-20	6-7	0	31,755		34,755-	2648	8	34	
6-24.20	8-9	0	31.00		31.000	J585	8	BR	Finished GAIS. 142,127 out
t									

DEQ AUTHORIZATION LETTER

LETTER OF AGREEMENT

CITY OF BANDON &

DEW VALLEY

DAVID LEFF PROPERTY

AGREEMENT BETWEEN CITY OF BANDON AND DAVID LEFF

This agreement is entered into by and between David Leff, hereinafter referred to as Landowner, and the City of Bandon, a municipal corporation.

WHEREAS, the City of Bandon operates a municipal wastewater treatment plant which produces an end product of sludge; and

WHEREAS, the City of Bandon needs a location at which this material may be disposed; and

WHEREAS, the Landowner is willing to allow the use of his fields for such disposal considering that the material presents no serious hazard to the Landowner's fields and would act as a fertilizer encouraging the growth of hay and young trees.

NOW, THEREFORE, IT IS HEREBY AGREED that the City of Bandon may apply sludge from their municipal wastewater treatment plant to Landowner's fields subject to the following terms and conditions:

A. <u>Site Designation</u>

- For purposes of this agreement, each contiguous area to which sludge is applied shall be called a "disposal site".
- Each sludge spray irrigation gun set up shall be called a "setting".
- The City of Bandon shall secure prior approval from the Landowner or designee to use a disposal site.
- Each disposal site and setting shall bear a unique number for purposes of record keeping.
- The City of Bandon shall measure, stake, number and map each setting in accordance with the City's equipment capabilities.
- A map will be maintained, jointly by the Landowner and the City of Bandon, showing the location of each disposal site setting

used.

- 7. The Landowner may, at any time, temporarily or permanently discontinue a disposal site if it is deemed necessary.
- B. <u>Posting of Disposal Site Areas</u>
 - The Landowner shall post approaches to disposal sites with no trespassing signs to control access.
 - The Landowner shall further agree to gate, lock and provide key to the City of Bandon, approaches to disposal sites if access is not controlled by no trespassing signs.
 - 3. The City of Bandon shall post approaches to disposal sites to advise of the disposal activities during application of sludge and maintain such posting for a minimum period of 45 days after completion of such application and/or as required by regulatory agencies.
 - Such signs shall include terminology as may be required by regulatory agencies.

C. <u>Method of Disposal</u>

The City of Bandon shall dispose of sludge in the following manner:

- 1. Application only on sites designated by the DEQ and Landowner.
- Application shall be rotated among the designated sites and settings.
- 3. Application shall be under pressure utilizing a spray gun.
- 4. All equipment shall stay on the roads.
- 5. There shall be no application within any drainage ditch.
- 6. No more than 100 pounds/acre of nitrogen shall be applied in any given two year cycle unless more is allowed by DEQ in writing.

D. Documentation

- The City of Bandon shall furnish the Landowner a quarterly summary of the number of loads of sludge applied to designated sites including the date of application and quantities spread.
- The City of Bandon shall furnish the Landowner a copy of such other data as is required by regulatory agencies.
- 3. Upon completion of use of a given disposal site, the City of Bandon shall furnish the Landowner such data pertaining to that site as is available which would be relevant to tree growth, including the total amounts of nitrogen and water applied to the site.

E. Maintenance of Landowner's Roads

The City of Bandon shall maintain the Landowner's roads used hereunder in accordance with the following:

1. <u>Repair of Specific Damage</u>

It shall be the responsibility of the City of Bandon to repair any specific road damage caused by operation of the City.

2. Unusual Road Damage

The Landowner will perform maintenance of unusual road damage which is not related to the use by the City of Bandon. Examples of unusual road damage would be major slides, culvert replacement and wash out of a fill.

F. Comply with Laws

The City of Bandon shall strictly comply with all environmental and other laws, regulations, and DEQ recommendations applicable to the disposal of municipal sludge. The Landowner reserves the right to promulgate rules not inconsistent with the terms of this agreement and the City of Bandon agrees to comply with the same as soon as reasonably possible.

G. <u>Termination</u>

This agreement may be terminated by either party upon thirty (30) days written notice or at any other time by mutual agreement of the parties. In case of breach of this agreement by the City of Bandon, the Landowner may order the immediate suspension of the application of sludge on his property. Notwithstanding the termination or suspension of this agreement, the rights and obligations of each party under Paragraphs D, E, F, and H shall continue in full force and effect.

H. Hold Harmless

It is hereby agreed that the City of Bandon shall indemnify, defend and hold harmless David Leff and his agents and employees from all claims, actions, demands, loss, damage or expense by any person or persons whatsoever arising out of this agreement and/or the application of sludge on Mr. Leff's fields by the City of Bandon. Actions covered by this paragraph include, but are not limited to, actions by governmental officials for the cleanup of hazardous wastes.

CITYAOFABANDON City Manager

City Attorney

Wastewater Treatment Plant

PRORERTY OWNE Cranberry Creet Ln,

0-11-00

Department of Environmental Quality Western Region Roseburg Office 725 SE Main Roseburg, OR 97470 (541) 440-3338 FAX(541) 440-3396

October 11, 2000

Bill Nielson Bandon Wastewater Treatment Plant PO Box 67 Bandon OR 97411

Re: File number 5664
Authorization to Land Apply Biosolids David Leff Property 87432 Cranberry Creek Lane Bandon OR Twp. 29S S, R. 15W W. Sec. 24 and 25

Bill:

This letter represents approval of your request to apply aerobic biosolids the above referenced property. Approval is subject to criteria detailed in the Oregon Administrative Rules, Chapter 340, Division 50 and the following conditions:

Responsibility:

It is the responsibility of Bandon Wastewater Treatment Facility (BWTF) to insure the proper handling and application of all biosolids generated. Transportation of the biosolids to the application site shall be done in such a manner as to prevent leaking or spilling the biosolids onto the highways, streets, roads, waterways or other land surfaces not approved for biosolids application.

Site Description:

The site has approximately 30 acres of hay pasture and trees, which can be used forbiosolid land application. The site is on the West Side of Highway 101 just south of Bandon, Oregon. The land application of biosolids on this ranch is to help to remediate and stabilize the farm's sandy loam-loamy sand soils. <u>This authorization is good for two</u> years at which time another site visit is required to review the farm practices and crop response to land applied biosolids over the previous two years. This authorization can be renewed in two years as an on going remedial land application practice to help reestablish the soil organic horizon on this farm. This biosolids application site is only that portion of this parcel that is shaded on the enclosed map.

Based upon an evaluation of this property the Department is pleased to grant you authorization to land apply stabilized biosolids subject to the conditions under your National Pollutant Discharge Elimination (NPDES) permit and the following stipulations:

÷

BWTF Leff Site October 11, 2000 Page 2 of 3

1. This site is approved for summer application (June 1 through Oct. 31) of biosolids. During biosolid land application, care should be taken to avoid wet soil conditions, which may have occurred as a result of precipitation, especially in low and concave areas of sites. Application is authorized when the temporary water table is at least 12 inches below the ground surface.

Biosolids shall be applied evenly and in a manner to prevent ponding or runoff.

 Biosolids shall not be applied closer than 50 feet to any drainage ditch, channel, pond or waterway or within 200 feet of any well or domestic water source.

4. Biosolids application rate shall not exceed approximately <u>32,000</u> <u>gallons/acre/years.</u> Changes in biosolids characteristics or crops management may necessitate appropriate adjustments in the application rate to maintain proper agronomic nitrogen loading (75 to 100 lb. Total N/acre depending upon digester-solids analysis).

5. If other sources of nitrogen are used, the biosolids application rate must be reduced so that commercial nitrogen in combination with biosolids nitrogen does not exceed agronomic loading rate of this site (100 lb. Total N/acre-year).

Site Use Limitations:

1. Controlled access to the biosolids site must be maintained for a period of 12 months following biosolids application.

2. Grazing animals should not be allowed on pasture within 30 days following biosolids application and 90 days for lactating animals.

Accidental Spillage:

The permittee shall immediately clean up any spillage of biosolids and notify the DEQ Roseburg office at 440-3338 of any such occurrences. Spillage which cannot be completely cleaned up shall be covered with hydrated lime (calcium Hydroxide) or lime (calcium oxide). A 50-lb. bag of liming material shall remain available during transportation of the biosolids.

Monitoring:

1. BWTF shall maintain daily records of accumulated biosolids application. Daily land application shall be kept on a field grid map or other easily readable system. BWTF is responsible for tracking the land application of biosolids on daily basis (number of dry pounds Nitrogen land applied per acre).

v,

BWTF Leff Site October 11, 2000 Page 3 of 3

2. A copy of this authorization letter and the biosolids certification statements shall be carried with all biosolids s that are to be land applied. The responsible parties who apply biosolids shall review these documents prior to land applying biosolids to this site.

3. BWTF shall provide the DEQ with monthly summaries of biosolids land application activities along with a current BWTF biosolids analysis in BWTF's annual report due February 19 of each year.

4. A copy of this site authorization letter and a signed biosolid pathogen and vector attraction reduction certification statement shall accompany all biosolids land applied at this site.

If you have any questions regarding this approval please call me at 440-3338.

Sincerely,

1

Paul Karnedy

Paul Kennedy, RS Environmental Specialist

cc: Biosolids Program, DEQ-Portland

۰.

-

essentidos assessos a contracto contracto con	725 SE N	Aain Street, I	Coseburg OR 974	70	
TAX			Date:	(1 - 12 - 2000) yes including cover sheer	. 4
BILL NIEL BARIDON			From:	IC KENNEDY B DEQ	
			Phone: Fax phone:	(541) 440-3338 (541) 440-3396	
				ante ante ante ante ante a fair a fair a fair ante ante ante ante ante ante ante ante	
				P [Please com	

- -

Π

E

-

John A. Kitzhaber, M.D., Governor

Western Region Eugene Office 165 East 7th Avenue, Suite 100 Eugene, OR97401 (541) 6%-7838 FAX (541) 6%-7851 OTRS 1-800-735-2900

October 3, 2014

Bill Nielsen, Wastewater Supervisor City of Bandon P.O. Box 67 80 Fillmore Ave Bandon OR 97411

RE: City of Bandon Biosolids Management Plan Approval File No. 5664 NPDES No. 101546 Coos County

Dear Mr. Bill Nielsen:

The Department of Environmental Quality (Department) has reviewed the City of Bandon's updated 2014 Biosolids Management Plan. Based upon review of the Biosolids Management Plan, the Department is pleased to advise the City that its Biosolids Management Plan is approved subject to the following conditions:

- 1. The City shall not make any significant changes in its solids handling activities that could substantially change the quality, or quantity of Biosolids, or land application activities outlined in the Biosolids Management Plan.
- 2. The City shall notify the Department of the connection of any new Significant Industrial User (SIU) to provide the Department the opportunity to evaluate the impact on Biosolids quality, or quantity.
- 3. The City shall maintain detailed records adequate to characterize its solids stabilization, Biosolids handling, and land application activities.
- 4. Annually, by February 19th, a comprehensive report shall be submitted to the Department's Eugene office that describes solid handling for the previous year. At a minimum, the report shall include the following:
 - Data on each site that received Biosolids that demonstrates biosolids were applied at agronomic rates and all other required management practices were followed.
 - Information sufficient to demonstrate that biosolids met pathogen reduction requirements required under 40 CFR § 503.32 and vector attraction standards required under 40 CFR § 503.33.
 - A detailed description of any violation of 40CFR § 503, or OAR Chapter 340 Division 50 and remedial actions taken to prevent the recurrence of similar violations in the future.

- 5. For Class B biosolids, application sites must meet the site selection criteria set forth in OAR 340-050-0070 and must be located within Coos County. For proposed new application sites that are deemed by the DEQ to be sensitive with respect to residential housing, runoff potential or threat to groundwater, an opportunity for public comment shall be provided in accordance with OAR 340-050-0030.
- 6. Under OAR 340-050-0030(3) this site authorization is a part of Bandon's Biosolid Management Plan (BMP) are enforceable under Bandon's NPDES permit; Under OAR 340-050-0031(2) and (3) these plans are part of your NPDES permit shall remain in effect until your NPDES expires and/or the site is terminated.

f you have any questions about this Biosolids Management Plan approval please call me at (541) 687-7439.

Sincerely,

Paul Kennedy, NRS3 Water Quality Program Western Region DEQ-Eugene Office

CC: Steve Nichols, WQ Program, Coos Bay DEQ File